首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For accurate classical molecular dynamics (MD) simulations of the calcium mediated bound complexes of annexin and membrane we have developed new force-field parameters correctly describing the interaction of the Ca ion with its environment. We have used quantum chemical calculations to investigate the potential energy surface experienced by the Ca ion within the three different binding sites found in domain 1 of annexin V (ANX V/1). Based on these calculations we were able to quantify the charge polarization of atoms within the binding sites, and to determine the geometry and force constants of harmonic restraints between the Ca ion and its coordinating oxygen atoms. Harmonic restraints were introduced to compensate for the deviations between the quantum mechanical potential energy surface and that of the classical force field. Our analysis has shown that using the refined force field for the Ca binding sites enables long-time MD simulations that conserve the initial structure of ANX V/1 significantly better than MD simulations using the standard force field.  相似文献   

2.
A novel least-squares fitting approach is presented to obtain classical force fields from trajectory and force databases produced by ab initio (e.g., Car-Parrinello) molecular dynamics (MD) simulations. The method was applied to derive effective nonpolarizable three-site force fields for liquid water at ambient conditions from Car-Parrinello MD simulations in the Becke-Lee-Yang-Parr approximation to the electronic density functional theory. The force-matching procedure includes a fit of short-ranged nonbonded forces, bonded forces, and atomic partial charges. The various parameterizations of the water force field differ by an enforced smooth cut-off applied to the short-ranged interaction term. These were obtained by fitting to the trajectory and force data produced by Car-Parrinello MD simulations of systems of 32 and 64 H(2)O molecules. The new water force fields were developed assuming both flexible or rigid molecular geometry. The simulated structural and self-diffusion properties of liquid water using the fitted force fields are in close agreement with those observed in the underlying Car-Parrinello MD simulations. The resulting empirical models compare to experiment much better than many conventional simple point charge (SPC) models. The fitted potential is also shown to combine well with more sophisticated intramolecular potentials. Importantly, the computational cost of the new models is comparable to that for SPC-like potentials.  相似文献   

3.
Combining analytical and theoretical methods, we present a detailed study of a heteropolytungstate cluster encapsulated in a shell of dendritically branching surfactants, namely (C(52)H(60)NO(12))(12)[(Mn(H(2)O))(3)(SbW(9)O(33))(2)], 3. This novel surfactant-encapsulated cluster (SEC) self-assembles spontaneously from polyoxometalate-containing solutions treated with a stoichiometric amount of dendrons. Compound 3 exhibits a discrete supramolecular architecture in which a single polyoxometalate anion resides in a compact shell of dendrons. Our approach attempts to combine the catalytic activity of polyoxometalates with the steric properties of tailored dendritic surfactants into size-selective catalytic systems. The structural characterization of the SEC is based on analytical ultracentrifugation (AUC) and small-angle neutron scattering (SANS). The packing arrangement of dendrons at the cluster surface is gleaned from molecular dynamics (MD) simulations, which suggests a highly porous shell structure due to the dynamic formation of internal clefts and cavities. From analysis of the MD trajectory of 3, a theoretical neutron-scattering function is derived that is in good agreement with experimental SANS data. Force field parameters used in MD simulations are partially derived from a quantum mechanical geometry optimization of [(Zn(H(2)O))(3)(SbW(9)O(33))(2)](12)(-), 2b, at the density functional theory (DFT) level. DFT calculations are corroborated by X-ray structure analysis of Na(6)K(6)[(Zn(H(2)O))(3)(SbW(9)O(33))(2)].23H(2)O, which is isostructural with the catalytically active Mn derivative 2a. The combined use of theoretical and analytical methods aims at rapidly prototyping smart catalysts ("dendrizymes"), which are structurally related to naturally occurring metalloproteins.  相似文献   

4.
5.
6.
Classical all-atom molecular dynamics (MD) simulations and quantum mechanical (QM) time-dependent density functional theory (TD-DFT) calculations are employed to study the conformational and photophysical properties of the first emitter excited state of tetramethyl-rhodamine iso-thiocyanate fluorophore in aqueous solution. For this purpose, a specific and accurate force field has been parameterised from QM data to model the fluorophore's first bright excited state. During the MD simulations, the consequences of the π→π* electronic transition on the structure and microsolvation sphere of the dye has been analysed in some detail and compared to the ground state behaviour. Thereafter, fluorescence has been calculated at the TD-DFT level on configurations sampled from the simulated MD trajectories, allowing us to include time dependent solvent effects in the computed emission spectrum. The latter, when compared with the absorption spectrum, reproduces well the experimental Stokes shift, further validating the proposed multilevel computational procedure.  相似文献   

7.
Amorphous silica is an inorganic material that is central for many nanotechnology applications, such as nanoelectronics, microfluidics, and nanopore sensors. To use molecular dynamics (MD) simulations to study the behavior of biomolecules interacting with silica, we developed a force field for amorphous silica surfaces based on their macroscopic wetting properties that is compatible with the CHARMM force field and TIP3P water model. The contact angle of a water droplet on a silica surface served as a criterion to tune the intermolecular interactions. The resulting force field was used to study the permeation of water through silica nanopores, illustrating the influence of the surface topography and the intermolecular parameters on permeation kinetics. We find that minute modeling of the amorphous surface is critical for MD studies, since the particular arrangement of surface atoms controls sensitively electrostatic interactions between silica and water.  相似文献   

8.
A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.  相似文献   

9.
The tetrameric M2 protein bundle of the influenza A virus is the proton channel responsible for the acidification of the viral interior, a key step in the infection cycle. Selective proton transport is achieved by successive protonation of the conserved histidine amino acids at position 37. A recent X-ray structure of the tetrameric transmembrane (TM) domain of the protein (residues 22-46) resolved several water clusters in the channel lumen, which suggest possible proton pathways to the His37 residues. To explore this hypothesis, we have carried out molecular dynamics (MD) simulations of a proton traveling towards the His37 side chains using MD with classical and quantum force fields. Diffusion through the first half of the channel to the "entry" water cluster near His37 may be hampered by significant kinetic barriers due to electrostatic repulsion. However, once in the entry cluster, a proton can move to one of the acceptor His37 in a nearly barrierless fashion, as evidenced both by MD simulations and a scan of the potential energy surface (PES). Water molecules of the entry cluster, although confined in the M2 pore and restricted in their motions, can conduct protons with a rate very similar to that of bulk water.  相似文献   

10.
An ab initio derived transferable polarizable force‐field has been developed for Zinc sulphide (ZnS) nanoparticle (NP) and ZnS NP‐PMMA nanocomposite. The structure and elastic constants of bulk ZnS using the new force‐field are within a few percent of experimental observables. The new force‐field show remarkable ability to reproduce structures and nucleation energies of nanoclusters (Zn1S1‐Zn12S12) as validated with that of the density functional theory calculations. A qualitative agreement of the radial distribution functions of Zn? O, in a ZnS nanocluster‐PMMA system, obtained using molecular mechanics molecular dynamics (MD) and ab initio MD (AIMD) simulations indicates that the ZnS–PMMA interaction through Zn? O bonding is explained satisfactorily by our force‐field. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Liquid water is investigated theoretically using combined molecular dynamics (MD) simulations and accurate electronic structure methods. The statistical mechanically averaged molecular properties of liquid water are calculated using the combined coupled cluster/molecular mechanics (CC/MM) method for a large number of configurations generated from MD simulations. The method includes electron correlation effects at the coupled cluster singles and doubles level and the use of a large correlation consistent basis set. A polarizable force field has been used for the molecular dynamics part in both the CC/MM method and in the MD simulation. We describe how the methodology can be optimized with respect to computational costs while maintaining the quality of the results. Using the optimized method we study the energetic properties including the heat of vaporization and electronic excitation energies as well as electric dipole and quadrupole moments, the frequency dependent electric (dipole) polarizability, and electric-field-induced second harmonic generation first and second hyperpolarizabilities. Comparisons with experiments are performed where reliable data are available. Furthermore, we discuss the important issue on how to compare the calculated microscopic nonlocal properties to the experimental macroscopic measurements.  相似文献   

12.
《Chemical physics letters》1986,127(5):456-461
The central force model for a water molecule is corrected by adding a three-body term. The present potential fits both an accurate ab initio potential energy surface and the fundamental vibrational frequencies of gas-phase water. The three-body terms allow us to reproduce the gas-phase IR spectrum by molecular dynamics simulations. Some problems connected with MD simulations of IR spectra are discussed.  相似文献   

13.
14.
We construct force fields suited for the study of three platinum group metals (PGM) as chloranions in aqueous solution from quantum chemical computations and report experimental data. Density functional theory (DFT) using the local density approximation (LDA), as well as extended basis sets that incorporate relativistic corrections for the transition metal atoms, has been used to obtain equilibrium geometries, harmonic vibrational frequencies, and atomic charges for the complexes. We found that DFT calculations of [PtCl(6)](2-).3H(2)O, [PdCl(4)](2-).2H(2)O, and [RhCl(6)](3-).3H(2)O water clusters compared well with molecular mechanics (MM) calculations using the specific force field developed here. The force field performed equally well in condensed phase simulations. A 500 ps molecular dynamics (MD) simulation of [PtCl(6)](2-) in water was used to study the structure of the solvation shell around the anion. The resulting data were compared to an experimental radial distribution function derived from X-ray diffraction experiments. We found the calculated pair correlation functions (PCF) for hexachloroplatinate to be in good agreement with experiment and were able to use the simulation results to identify and resolve two water-anion peaks in the experimental spectrum.  相似文献   

15.
Molecular dynamics (MD) computer simulations of liquid water adsorbed on the muscovite (001) surface provide a greatly increased, atomistically detailed understanding of surface-related effects on the spatial variation in the structural and orientational ordering, hydrogen bond (H-bond) organization, and local density of H2O molecules at this important model phyllosilicate surface. MD simulations at constant temperature and volume (statistical NVT ensemble) were performed for a series of model systems consisting of a two-layer muscovite slab (representing 8 crystallographic surface unit cells of the substrate) and 0 to 319 adsorbed H2O molecules, probing the atomistic structure and dynamics of surface aqueous films up to 3 nm in thickness. The results do not demonstrate a completely liquid-like behavior, as otherwise suggested from the interpretation of X-ray reflectivity measurements and earlier Monte Carlo simulations. Instead, a more structurally and orientationally restricted behavior of surface H2O molecules is observed, and this structural ordering extends to larger distances from the surface than previously expected. Even at the largest surface water coverage studied, over 20% of H2O molecules are associated with specific adsorption sites, and another 50% maintain strongly preferred orientations relative to the surface. This partially ordered structure is also different from the well-ordered 2-dimensional ice-like structure predicted by ab initio MD simulations for a system with a complete monolayer water coverage. However, consistent with these ab initio results, our simulations do predict that a full molecular monolayer surface water coverage represents a relatively stable surface structure in terms of the lowest diffusional mobility of H2O molecules along the surface. Calculated energies of water adsorption are in good agreement with available experimental data.  相似文献   

16.
In order to study the conformational space of new natural products derivatives using molecular mechanics (MM) and molecular dynamics (MD), the Gromos force field has been expanded to include epoxidic systems. The parameterization and validation of Gromos were done to simulate 22, 23 epoxides in brassinosteroids analogs. The parameters were derived with an emphasis on the dependence between energy and dihedral angle due to its relevance in the conformational analysis. Molecular dynamics simulations of two model systems similar to those of interest were performed to validate the force field with the proposed parameters. Excellent agreement has been obtained between the MD simulation and the results of a potential energy surface (PES) calculated at B3LYP/6-31G** level.  相似文献   

17.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.  相似文献   

19.
Molecular dynamics (MD) simulations are extensively used in the study of the structures and functions of proteins. Ab initio protein structure prediction is one of the most important subjects in computational biology, and many trials have been performed using MD simulation so far. Since the results of MD simulations largely depend on the force field, reliable force field parameters are indispensable for the success of MD simulation. In this work, we have modified atom charges in a standard force field on the basis of water-phase quantum chemical calculations. The modified force field turned out appropriate for ab initio protein structure prediction by the MD simulation with the generalized Born method. Detailed analysis was performed in terms of the conformational stability of amino acid residues, the stability of secondary structure of proteins, and the accuracy for prediction of protein tertiary structure, comparing the modified force field with a standard one. The energy balance between alpha-helix and beta-sheet structures was significantly improved by the modification of charge parameters.  相似文献   

20.
To raise the accuracy of the force field for nucleic acids, several parameters were elaborated, focusing on the rotation around chi torsion axis. The reliability of molecular dynamics (MD) simulation was significantly increased by improving the torsion parameters at C8--N9--C1'--X (X = H1', C2', O4') in A, G and those at C6--N1--C1'--X in C, T, and U. In this work, we constructed small models representing the chemical structure of A, G, C, T, and U, and estimated energy profile for chi-axis rotation by executing numerous quantum mechanical (QM) calculations. The parameters were derived by discrete Fourier transformation of the calculated QM data. A comparison in energy profile between molecular mechanical (MM) calculation and QM one shows that our presently derived parameters well reproduce the energy surface of QM calculation for all the above torsion terms. Furthermore, our parameters show a good performance in MD simulations of some nucleic acids. Hence, the present refinement of parameters will enable us to perform more accurate simulations for various types of nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号