首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the acoustic characteristics of children's speech and voices that account for listeners' ability to identify gender. In Experiment I, vocal recordings and gross physical measurements of 4-, 8-, 12-, and 16-year olds were taken (10 girls and 10 boys per age group). The speech sample consisted of seven nondiphthongal vowels of American English (/ae/ "had," /E/ "head," /i/ "heed," /I/ "hid," /a/ "hod," /inverted v/ "hud," and /u/ "who'd") produced in the carrier phrase, "Say /hVd/ again." Fundamental frequency (f0) and formant frequencies (F1, F2, F3) were measured from these syllables. In Experiment II, 20 adults rated the syllables produced by the children in Experiment I based on a six-point gender rating scale. The results from these experiments indicate (1) vowel formant frequencies differentiate gender for children as young as four years of age, while formant frequencies and f0 differentiate gender after 12 years of age, (2) the relationship between gross measures of physical size and vocal characteristics is apparent for at least 12- and 16-year olds, and (3) listeners can identify gender from the speech and voice of children as young as four years of age, and with respect to young children, listeners appear to base their gender ratings on vowel formant frequencies. The findings are discussed in relation to the development of gender identity and its perceptual representation in speech and voice.  相似文献   

2.
Two methods are described for speaker normalizing vowel spectral features: one is a multivariable linear transformation of the features and the other is a polynomial warping of the frequency scale. Both normalization algorithms minimize the mean-square error between the transformed data of each speaker and vowel target values obtained from a "typical speaker." These normalization techniques were evaluated both for formants and a form of cepstral coefficients (DCTCs) as spectral parameters, for both static and dynamic features, and with and without fundamental frequency (F0) as an additional feature. The normalizations were tested with a series of automatic classification experiments for vowels. For all conditions, automatic vowel classification rates increased for speaker-normalized data compared to rates obtained for nonnormalized parameters. Typical classification rates for vowel test data for nonnormalized and normalized features respectively are as follows: static formants--69%/79%; formant trajectories--76%/84%; static DCTCs 75%/84%; DCTC trajectories--84%/91%. The linear transformation methods increased the classification rates slightly more than the polynomial frequency warping. The addition of F0 improved the automatic recognition results for nonnormalized vowel spectral features as much as 5.8%. However, the addition of F0 to speaker-normalized spectral features resulted in much smaller increases in automatic recognition rates.  相似文献   

3.
Static, dynamic, and relational properties in vowel perception   总被引:2,自引:0,他引:2  
The present work reviews theories and empirical findings, including results from two new experiments, that bear on the perception of English vowels, with an emphasis on the comparison of data analytic "machine recognition" approaches with results from speech perception experiments. Two major sources of variability (viz., speaker differences and consonantal context effects) are addressed from the classical perspective of overlap between vowel categories in F1 x F2 space. Various approaches to the reduction of this overlap are evaluated. Two types of speaker normalization are considered. "Intrinsic" methods based on relationships among the steady-state properties (F0, F1, F2, and F3) within individual vowel tokens are contrasted with "extrinsic" methods, involving the relationships among the formant frequencies of the entire vowel system of a single speaker. Evidence from a new experiment supports Ainsworth's (1975) conclusion [W. Ainsworth, Auditory Analysis and Perception of Speech (Academic, London, 1975)] that both types of information have a role to play in perception. The effects of consonantal context on formant overlap are also considered. A new experiment is presented that extends Lindblom and Studdert-Kennedy's finding [B. Lindblom and M. Studdert-Kennedy, J. Acoust. Soc. Am. 43, 840-843 (1967)] of perceptual effects of consonantal context on vowel perception to /dVd/ and /bVb/ contexts. Finally, the role of vowel-inherent dynamic properties, including duration and diphthongization, is briefly reviewed. All of the above factors are shown to have reliable influences on vowel perception, although the relative weight of such effects and the circumstances that alter these weights remain far from clear. It is suggested that the design of more complex perceptual experiments, together with the development of quantitative pattern recognition models of human vowel perception, will be necessary to resolve these issues.  相似文献   

4.
Research on the perception of vowels in the last several years has given rise to new conceptions of vowels as articulatory, acoustic, and perceptual events. Starting from a "simple" target model in which vowels were characterized articulatorily as static vocal tract shapes and acoustically as points in a first and second formant (F1/F2) vowel space, this paper briefly traces the evolution of vowel theory in the 1970s and 1980s in two directions. (1) Elaborated target models represent vowels as target zones in perceptual spaces whose dimensions are specified as formant ratios. These models have been developed primarily to account for perceivers' solution of the "speaker normalization" problem. (2) Dynamic specification models emphasize the importance of formant trajectory patterns in specifying vowel identity. These models deal primarily with the problem of "target undershoot" associated with the coarticulation of vowels with consonants in natural speech and with the issue of "vowel-inherent spectral change" or diphthongization of English vowels. Perceptual studies are summarized that motivate these theoretical developments.  相似文献   

5.
Two experiments investigated whether listeners change their vowel categorization decisions to adjust to different accents of British English. Listeners from different regions of England gave goodness ratings on synthesized vowels embedded in natural carrier sentences that were spoken with either a northern or southern English accent. A computer minimization algorithm adjusted F1, F2, F3, and duration on successive trials according to listeners' goodness ratings, until the best exemplar of each vowel was found. The results demonstrated that most listeners adjusted their vowel categorization decisions based on the accent of the carrier sentence. The patterns of perceptual normalization were affected by individual differences in language background (e.g., whether the individuals grew up in the north or south of England), and were linked to the changes in production that speakers typically make due to sociolinguistic factors when living in multidialectal environments.  相似文献   

6.
Four multiple-channel cochlear implant patients were tested with synthesized versions of the words "hid, head, had, hud, hod, hood" containing 1, 2, or 3 formants, and with a natural 2-formant version of the same words. The formant frequencies were encoded in terms of the positions of electrical stimulation in the cochlea. Loudness, duration, and fundamental frequency were kept fixed within the synthetic stimulus sets. The average recognition scores were 47%, 61%, 62%, and 79% for the synthesized 1-, 2-, and 3-format vowels and the natural vowels, respectively. These scores showed that the place coding of the first and second formant frequencies accounted for a large part of the vowel recognition of cochlear implant patients using these coding schemes. The recognition of the natural stimuli was significantly higher than recognition of the synthetic stimuli, indicating that extra cues such as loudness, duration, and fundamental frequency contributed to recognition of the spoken words.  相似文献   

7.
This study investigated the extent to which adult Japanese listeners' perceived phonetic similarity of American English (AE) and Japanese (J) vowels varied with consonantal context. Four AE speakers produced multiple instances of the 11 AE vowels in six syllabic contexts /b-b, b-p, d-d, d-t, g-g, g-k/ embedded in a short carrier sentence. Twenty-four native speakers of Japanese were asked to categorize each vowel utterance as most similar to one of 18 Japanese categories [five one-mora vowels, five two-mora vowels, plus/ei, ou/ and one-mora and two-mora vowels in palatalized consonant CV syllables, C(j)a(a), C(j)u(u), C(j)o(o)]. They then rated the "category goodness" of the AE vowel to the selected Japanese category on a seven-point scale. None of the 11 AE vowels was assimilated unanimously to a single J response category in all context/speaker conditions; consistency in selecting a single response category ranged from 77% for /eI/ to only 32% for /ae/. Median ratings of category goodness for modal response categories were somewhat restricted overall, ranging from 5 to 3. Results indicated that temporal assimilation patterns (judged similarity to one-mora versus two-mora Japanese categories) differed as a function of the voicing of the final consonant, especially for the AE vowels, /see text/. Patterns of spectral assimilation (judged similarity to the five J vowel qualities) of /see text/ also varied systematically with consonantal context and speakers. On the basis of these results, it was predicted that relative difficulty in the identification and discrimination of AE vowels by Japanese speakers would vary significantly as a function of the contexts in which they were produced and presented.  相似文献   

8.
The effects of variations in vocal effort corresponding to common conversation situations on spectral properties of vowels were investigated. A database in which three degrees of vocal effort were suggested to the speakers by varying the distance to their interlocutor in three steps (close--0.4 m, normal--1.5 m, and far--6 m) was recorded. The speech materials consisted of isolated French vowels, uttered by ten naive speakers in a quiet furnished room. Manual measurements of fundamental frequency F0, frequencies, and amplitudes of the first three formants (F1, F2, F3, A1, A2, and A3), and on total amplitude were carried out. The speech materials were perceptually validated in three respects: identity of the vowel, gender of the speaker, and vocal effort. Results indicated that the speech materials were appropriate for the study. Acoustic analysis showed that F0 and F1 were highly correlated with vocal effort and varied at rates close to 5 Hz/dB for F0 and 3.5 Hz/dB for F1. Statistically F2 and F3 did not vary significantly with vocal effort. Formant amplitudes A1, A2, and A3 increased significantly; The amplitudes in the high-frequency range increased more than those in the lower part of the spectrum, revealing a change in spectral tilt. On the average, when the overall amplitude is increased by 10 dB, A1, A2, and A3 are increased by 11, 12.4, and 13 dB, respectively. Using "auditory" dimensions, such as the F1-F0 difference, and a "spectral center of gravity" between adjacent formants for representing vowel features did not reveal a better constancy of these parameters with respect to the variations of vocal effort and speaker. Thus a global view is evoked, in which all of the aspects of the signal should be processed simultaneously.  相似文献   

9.
Several experiments have found that changing the intrinsic f0 of a vowel can have an effect on perceived vowel quality. It has been suggested that these shifts may occur because f0 is involved in the specification of vowel quality in the same way as the formant frequencies. Another possibility is that f0 affects vowel quality indirectly, by changing a listener's assumptions about characteristics of a speaker who is likely to have uttered the vowel. In the experiment outlined here, participants were asked to listen to vowels differing in terms of f0 and their formant frequencies and report vowel quality and the apparent speaker's gender and size on a trial-by-trial basis. The results presented here suggest that f0 affects vowel quality mainly indirectly via its effects on the apparent-speaker characteristics; however, f0 may also have some residual direct effects on vowel quality. Furthermore, the formant frequencies were also found to have significant indirect effects on vowel quality by way of their strong influence on the apparent speaker.  相似文献   

10.
The purpose of this study was to examine the effect of reduced vowel working space on dysarthric talkers' speech intelligibility using both acoustic and perceptual approaches. In experiment 1, the acoustic-perceptual relationship between vowel working space area and speech intelligibility was examined in Mandarin-speaking young adults with cerebral palsy. Subjects read aloud 18 bisyllabic words containing the vowels /i/, /a/, and /u/ using their normal speaking rate. Each talker's words were identified by three normal listeners. The percentage of correct vowel and word identification were calculated as vowel intelligibility and word intelligibility, respectively. Results revealed that talkers with cerebral palsy exhibited smaller vowel working space areas compared to ten age-matched controls. The vowel working space area was significantly correlated with vowel intelligibility (r=0.632, p<0.005) and with word intelligibility (r=0.684, p<0.005). Experiment 2 examined whether tokens of expanded vowel working spaces were perceived as better vowel exemplars and represented with greater perceptual spaces than tokens of reduced vowel working spaces. The results of the perceptual experiment support this prediction. The distorted vowels of talkers with cerebral palsy compose a smaller acoustic space that results in shrunken intervowel perceptual distances for listeners.  相似文献   

11.
The spectral envelope is a major determinant of the perceptual identity of many classes of sound including speech. When sounds are transmitted from the source to the listener, the spectral envelope is invariably and diversely distorted, by factors such as room reverberation. Perceptual compensation for spectral-envelope distortion was investigated here. Carrier sounds were distorted by spectral envelope difference filters whose frequency response is the spectral envelope of one vowel minus the spectral envelope of another. The filter /I/ minus /e/ and its inverse were used. Subjects identified a test sound that followed the carrier. The test sound was drawn from an /Itch/ to /etch/ continuum. Perceptual compensation produces a phoneme boundary difference between /I/ minus /e/ and its inverse. Carriers were the phrase "the next word is" spoken by the same (male) speaker as the test sounds, signal-correlated noise derived from this phrase, the same phrase spoken by a female speaker, male and female versions played backwards, and a repeated end-point vowel. The carrier and test were presented to the same ear, to different ears, and from different apparent directions (by varying interaural time delay). The results show that compensation is unlike peripheral phenomena, such as adaptation, and unlike phonetic perceptual phenomena. The evidence favors a central, auditory mechanism.  相似文献   

12.
This study examines cross-linguistic variation in the location of shared vowels in the vowel space across five languages (Cantonese, American English, Greek, Japanese, and Korean) and three age groups (2-year-olds, 5-year-olds, and adults). The vowels /a/, /i/, and /u/ were elicited in familiar words using a word repetition task. The productions of target words were recorded and transcribed by native speakers of each language. For correctly produced vowels, first and second formant frequencies were measured. In order to remove the effect of vocal tract size on these measurements, a normalization approach that calculates distance and angular displacement from the speaker centroid was adopted. Language-specific differences in the location of shared vowels in the formant values as well as the shape of the vowel spaces were observed for both adults and children.  相似文献   

13.
The role of auditory feedback in speech motor control was explored in three related experiments. Experiment 1 investigated auditory sensorimotor adaptation: the process by which speakers alter their speech production to compensate for perturbations of auditory feedback. When the first formant frequency (F1) was shifted in the feedback heard by subjects as they produced vowels in consonant-vowel-consonant (CVC) words, the subjects' vowels demonstrated compensatory formant shifts that were maintained when auditory feedback was subsequently masked by noise-evidence of adaptation. Experiment 2 investigated auditory discrimination of synthetic vowel stimuli differing in F1 frequency, using the same subjects. Those with more acute F1 discrimination had compensated more to F1 perturbation. Experiment 3 consisted of simulations with the directions into velocities of articulators model of speech motor planning, which showed that the model can account for key aspects of compensation. In the model, movement goals for vowels are regions in auditory space; perturbation of auditory feedback invokes auditory feedback control mechanisms that correct for the perturbation, which in turn causes updating of feedforward commands to incorporate these corrections. The relation between speaker acuity and amount of compensation to auditory perturbation is mediated by the size of speakers' auditory goal regions, with more acute speakers having smaller goal regions.  相似文献   

14.
A quantitative perceptual model of human vowel recognition based upon psychoacoustic and speech perception data is described. At an intermediate auditory stage of processing, the specific bark difference level of the model represents the pattern of peripheral auditory excitation as the distance in critical bands (barks) between neighboring formants and between the fundamental frequency (F0) and first formant (F1). At a higher, phonetic stage of processing, represented by the critical bark difference level of the model, the transformed vowels may be dichotomously classified based on whether the difference between formants in each dimension falls within or exceeds the critical distance of 3 bark for the spectral center of gravity effect [Chistovich et al., Hear. Res. 1, 185-195 (1979)]. Vowel transformations and classifications correspond well to several major phonetic dimensions and features by which vowels are perceived and traditionally classified. The F1-F0 dimension represents vowel height, and high vowels have F1-F0 differences within 3 bark. The F3-F2 dimension corresponds to vowel place of articulation, and front vowels have F3-F2 differences of less than 3 bark. As an inherent, speaker-independent normalization procedure, the model provides excellent vowel clustering while it greatly reduces between-speaker variability. It offers robust normalization through feature classification because gross binary categorization allows for considerable acoustic variability. There was generally less formant and bark difference variability for closely spaced formants than for widely spaced formants. These findings agree with independently observed perceptual results and support Stevens' quantal theory of vowel production and perceptual constraints on production predicted from the critical bark difference level of the model.  相似文献   

15.
Speaking rate in general, and vowel duration more specifically, is thought to affect the dynamic structure of vowel formant tracks. To test this, a single, professional speaker read a long text at two different speaking rates, fast and normal. The present project investigated the extent to which the first and second formant tracks of eight Dutch vowels varied under the two different speaking rate conditions. A total of 549 pairs of vowel realizations from various contexts were selected for analysis. The formant track shape was assessed on a point-by-point basis, using 16 samples at the same relative positions in the vowels. Differences in speech rate only resulted in a uniform change in F1 frequency. Within each speaking rate, there was only evidence of a weak leveling off of the F1 tracks of the open vowels /a a/ with shorter durations. When considering sentence stress or vowel realizations from a more uniform, alveolar-vowel-alveolar context, these same conclusions were reached. These results indicate a much more active adaptation to speaking rate than implied by the target undershoot model.  相似文献   

16.
A perceptual analysis of the French vowel [u] produced by 10 speakers under normal and perturbed conditions (Savariaux et al., 1995) is presented which aims at characterizing in the perceptual domain the task of a speaker for this vowel, and, then, at understanding the strategies developed by the speakers to deal with the lip perturbation. Identification and rating tests showed that the French [u] is perceptually fairly well described in the [F1, (F2-F0)] plane, and that the parameter (((F2-F0) + F1)/2) (all frequencies in bark) provides a good overall correlate of the "grave" feature classically used to describe the vowel [u] in all languages. This permitted reanalysis of the behavior of the speakers during the perturbation experiment. Three of them succeed in producing a good [u] in spite of the lip tube, thanks to a combination of limited changes on F1 and (F2-F0), but without producing the strong backward movement of the tongue, which would be necessary to keep the [F1,F2] pattern close to the one measured in normal speech. The only speaker who strongly moved his tongue back and maintained F1 and F2 at low values did not produce a perceptually well-rated [u], but additional tests demonstrate that this gesture allowed him to preserve the most important phonetic features of the French [u], which is primarily a back and rounded vowel. It is concluded that speech production is clearly guided by perceptual requirements, and that the speakers have a good representation of them, even if they are not all able to meet them in perturbed conditions.  相似文献   

17.
This study presents various acoustic measures used to examine the sequence /a # C/, where "#" represents different prosodic boundaries in French. The 6 consonants studied are /b d g f s S/ (3 stops and 3 fricatives). The prosodic units investigated are the utterance, the intonational phrase, the accentual phrase, and the word. It is found that vowel target values, formant transitions into the stop consonant, and the rate of change in spectral tilt into the fricative, are affected by the strength of the prosodic boundary. F1 becomes higher for /a/ the stronger the prosodic boundary, with the exception of one speaker's utterance data, which show the effects of articulatory declension at the utterance level. Various effects of the stop consonant context are observed, the most notable being a tendency for the vowel /a/ to be displaced in the direction of the F2 consonant "locus" for /d/ (the F2 consonant values for which remain relatively stable across prosodic boundaries) and for /g/ (the F2 consonant values for which are displaced in the direction of the velar locus in weaker prosodic boundaries, together with those of the vowel). Velocity of formant transition may be affected by prosodic boundary (with greater velocity at weaker boundaries), though results are not consistent across speakers. There is also a tendency for the rate of change in spectral tilt moving from the vowel to the fricative to be affected by the presence of a prosodic boundary, with a greater rate of change at the weaker prosodic boundaries. It is suggested that spectral cues, in addition to duration, amplitude, and F0 cues, may alert listeners to the presence of a prosodic boundary.  相似文献   

18.

Background  

The speech signal contains both information about phonological features such as place of articulation and non-phonological features such as speaker identity. These are different aspects of the 'what'-processing stream (speaker vs. speech content), and here we show that they can be further segregated as they may occur in parallel but within different neural substrates. Subjects listened to two different vowels, each spoken by two different speakers. During one block, they were asked to identify a given vowel irrespectively of the speaker (phonological categorization), while during the other block the speaker had to be identified irrespectively of the vowel (speaker categorization). Auditory evoked fields were recorded using 148-channel magnetoencephalography (MEG), and magnetic source imaging was obtained for 17 subjects.  相似文献   

19.
Imitations of ten synthesized vowels were recorded from 33 speakers including men, women, and children. The first three formant frequencies of the imitations were estimated from spectrograms and considered with respect to developmental patterns in vowel formant structure, uniform scale factors for vowel normalization, and formant variability. Strong linear effects were observed in the group data for imitations of most of the English vowels studied, and straight lines passing through the origin provided a satisfactory fit to linear F1--F2 plots of the English vowel data. Logarithmic transformations of the formant frequencies helped substantially to equalize the dispersion of the group data for different vowels, but formant scale factors were observed to vary somewhat with both formant number and vowel identity. Variability of formant frequency was least for F1 (s.d. of 60 Hz or less for English vowels of adult males) and about equal for F2 and F3 (s.d. of 100 Hz or less for English vowels of adult males).  相似文献   

20.
The effect of speaking rate variations on second formant (F2) trajectories was investigated for a continuum of rates. F2 trajectories for the schwa preceding a voiced bilabial stop, and one of three target vocalic nuclei following the stop, were generated for utterances of the form "Put a bV here, where V was /i/,/ae/ or /oI/. Discrete spectral measures at the vowel-consonant and consonant-vowel interfaces, as well as vowel target values, were examined as potential parameters of rate variation; several different whole-trajectory analyses were also explored. Results suggested that a discrete measure at the vowel consonant (schwa-consonant) interface, the F2off value, was in many cases a good index of rate variation, provided the rates were not unusually slow (vowel durations less than 200 ms). The relationship of the spectral measure at the consonant-vowel interface, F2 onset, as well as that of the "target" for this vowel, was less clearly related to rate variation. Whole-trajectory analyses indicated that the rate effect cannot be captured by linear compressions and expansions of some prototype trajectory. Moreover, the effect of rate manipulation on formant trajectories interacts with speaker and vocalic nucleus type, making it difficult to specify general rules for these effects. However, there is evidence that a small number of speaker strategies may emerge from a careful qualitative and quantitative analysis of whole formant trajectories. Results are discussed in terms of models of speech production and a group of speech disorders that is usually associated with anomalies of speaking rate, and hence of formant frequency trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号