共查询到20条相似文献,搜索用时 10 毫秒
1.
Determination of iodide in seawater and edible salt by microcolumn liquid chromatography with poly(ethylene glycol) stationary phase 总被引:1,自引:0,他引:1
An ion chromatography method for rapid and direct determination of iodide in seawater and edible salt is reported. Separation was achieved using a laboratory-made C30 packed column (100 mm x 0.32 mm i.d.) modified with poly(ethylene glycol) (PEG). Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention of analyte anions. The retention time of anions increased with increasing eluent concentration when lithium chloride, sodium chloride, potassium chloride, sodium sulfate, magnesium sulfate were used as the eluent, while it decreased with increasing eluent concentration when ammonium sulfate was used as the eluent. The detection limit for iodide obtained by injecting 0.2 microl of sample was 9 microg/l (S/N = 3). The present method was successfully applied to the rapid and direct determination of iodide in seawater and edible salt samples. Partition may be involved in the present separation mode. 相似文献
2.
Summary Carbowax 20M poly(ethylene glycol) stationary phase was immobilized on Chromosorb W by cross-linking with pluriisocyanate. The properties of the prepared packing material were investigated. Column efficiencies of 10,960 and 7,510 theoretical plates/meter were obtained for n-pentadecane and 1-heptanol, respectively. 相似文献
3.
The solvation parameter model is used to study differences in selectivity for poly(ethylene glycol) stationary phases for packed column (Carbowax 20M) and fused-silica, open-tubular column (HP-20M, AT-Wax, HP-INNOWax and DB-FFAP) gas chromatography. All phases are dipolar, strongly hydrogen-bond basic with no hydrogen-bond acidity and of moderate cohesion. No two phases are exactly alike, however, and selectivity differences identified with cavity formation and dispersion interactions, n- and pi-electron pair interactions, dipole-type interactions and hydrogen-bond interactions are quantified by differences in the system constants at a fixed temperature where retention occurs solely by gas-liquid partitioning. The system constants vary linearly with temperature over the range 60-140 degrees C (except for n- and pi-electron pair interactions which are temperature invariant) facilitating a general comparison of the importance of temperature on selectivity differences for compared phases. From a mechanistic point of view it is demonstrated that selectivity differences can result from chemical differences between the poly(ethylene glycol) stationary phases and from differences in the relative contribution of interfacial adsorption to the retention mechanism. The latter depends on both system properties and solute characteristics. 相似文献
4.
Toyohide Takeuchi Budhi Oktavia Lee Wah Lim 《Analytical and bioanalytical chemistry》2009,393(4):1267-1272
Methyl-capped poly(ethylene oxide) moieties were chemically bonded to silica gel using an amine-reactive modification reagent
and evaluated as the stationary phase for ion chromatography. In this work, primary amino groups of an aminopropylsilica packing
material were reacted with methyl-PEO12-NHS ester (succinimidyl-{[N-methyl]-dodecaethyleneglycol} ester) in phosphate buffer (pH 7.0) at room temperature. The prepared poly(ethylene oxide)-bonded
stationary was evaluated for the separation of inorganic anions, and the retention behavior of inorganic anions on the prepared
stationary phase was examined. The elution order of the investigated anions was the same as that observed in common ion chromatography.
Both cations and anions of the eluent affected the retention of the analyte anions. Ion exchange was involved for the retention
of analyte anions, although the present stationary phase does not possess any discrete ion-exchange sites. The stationary
phase was applied to the separation of trace anions contained in tap water and a rock salt. 相似文献
5.
James L. Stephenson Scott A. McLuckey 《Journal of the American Society for Mass Spectrometry》1998,9(9):957-965
Multiply charged poly(ethylene glycol) ions of the form (M+nNa) n+ derived from electrospray ionization have been subjected to reactions with negative ions in the quadrupole ion trap. Mixtures of multiply charged positive ions ranging in average mass from about 2000 to about 14,000 Da were observed to react with perfluorocarbon anions by either proton transfer or fluoride transfer. Iodide anions reacted with the same positive ions by attachment. In no case was fragmentation of the polymer ion observed. In all cases, the multiply charged positive ion charge states could be readily reduced to +1, thereby eliminating the charge state overlap observed in the normal electrospray mass spectrum. With all three reaction mechanisms, however, the +1 product ions were comprised of mixtures of products with varying numbers of sodium ions, and in the case of iodide attachment and fluoride transfer, varying numbers of halogen anions. These reactions shift the mass distributions to higher masses and broaden the distributions. The extents to which these effects occur are functions of the magnitudes of the initial charges and the width of the initial charge state distributions. Care must be taken in deriving information about the polymer molecular weight distribution from the singly charged product ions arising from these ion/ion reactions. The cluster ions containing iodide were shown to be intermediates in sodium ion transfer. Dissociation of the adduct ions can therefore lead to a +1 product ion population that is comprised predominantly of M+Na+ ions. However, a strategy based on the dissociation of the iodide cluster ions is limited by difficulties in dissociating high mass-to-charge ions in the quadrupole ion trap. 相似文献
6.
《Journal of chromatography. A》1999,830(1):211-217
Large sample volume injections including both on-column analyte focusing and on-column matrix elimination techniques were examined for semi-micro ion chromatography of trace iodide (I−) in seawater. A semi-microcolumn (35×1 mm I.D.) packed with styrene–divinylbenzene copolymer with high anion-exchange capacity and a mobile phase of 0.03 M NaClO4+0.5 M NaCl+5 mM sodium phosphate buffer, pH 6.0, was used. Iodide in seawater was effectively concentrated on the column by both electrostatic and hydrophobic interactions and was eluted without peak broadening. ClO4− (NaClO4) in the mobile phase was effective for the elution of iodide and Cl− (NaCl) for both the concentration of iodide (I−) with hydrophobicity and the removal of interference by the major anions. An excess of major anions in seawater did not disturb the detection of iodide at UV 226 nm. The relative standard deviations for successive injections of 5 and 1 μg/l I− (2 ml of 35‰ artificial seawater) were 1.5 and 5.8% (n=5, each), respectively. The slope of calibration curve (by peak area) using the semi-microcolumn was ∼2.8-times higher than that for a conventional column with the same resin (150×4.6 mm I.D.) The present method had a detection limit of 0.2 μg/l I− for 2 ml of 35‰ artificial seawater and was successfully applied to seawater samples. 相似文献
7.
8.
Guo Z Liu Y Xu J Xu Q Xue X Zhang F Ke Y Liang X Lei A 《Journal of chromatography. A》2008,1191(1-2):78-82
Oligo(ethylene glycol) (OEG) covalently bonded silica was prepared by using click chemistry and employed as a stationary phase for reversed-phase high-performance liquid chromatography. The column efficiency and effect of organic modifier content on retention were investigated. The separation selectivity was also studied with phenyl compounds and an actual sample of natural products. The results indicated that the stationary phase possessed good separation efficiency and separation selectivity in RP-HPLC mode. Moreover, the stationary phase showed good complementary separation selectivity to the C18 stationary phase. The OEG stationary phase had "clustering" function for "homologous component" in the separation of natural products. 相似文献
9.
Iguerb O Poleunis C Mazéas F Compère C Bertrand P 《Langmuir : the ACS journal of surfaces and colloids》2008,24(21):12272-12281
Biofouling of all structures immersed in seawater constitutes an important problem, and many strategies are currently being developed to tackle it. In this context, our previous work shows that poly(ethylene glycol) monoacrylate (PEGA) macromonomer grafted on preoxidized poly(methyl methacrylate) (PMMAox) films exhibits an excellent repellency against the bovine serum albumin used as a model protein. This study aims to evaluate the following: (1) the prevention of a marine extract material adsorption by the modified surfaces and (2) the antifouling property of the PEGA-g-PMMAox substrates when immersed in natural seawater during two seasons (season 1: end of April-beginning of May 2007, and season 2: end of October-beginning of November 2007). The antifouling performances of the PEGA-g-PMMAox films are investigated for different PEG chain lengths and macromonomer concentrations into the PEGA-based coatings. These two parameters are followed as a function of the immersion time, which evolves up to 14 days. The influence of the PEGA layer on marine compounds (proteins and phospholipids) adsorption is evidenced by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). It was found that the antifouling efficiency of the PEGA-grafted surfaces increases with both PEGA concentration and PEG chain length. 相似文献
10.
A normal-phase HPLC system using an amino column has been developed to characterise oligomers of poly(ethylene glycol)s (PEGs) of average Mr 400 to 2000 with derivatisation by dinitrobenzoate. Normal-phase HPLC with gradient elution using ternary solvents of hexane, dichloromethane and methanol has produced a baseline resolution for oligomers of PEG 400, 600 and 1000, while PEG 1000 and 2000 were analysed by using binary solvents of acetonitrile and water. Mixtures of PEGs have been determined by these HPLC systems. PEG 400 in a textile finish has also been determined with satisfactory recovery. It has been found that the hydroxyl group of solvents in normal-phase HPLC plays an important role in resolution and retention of PEG oligomers. Derivatisation efficiency for PEGs by dinitrobenzoyl chloride and quantitative determination of derivatised PEGs by HPLC have been studied. A reversed-phase (RP) mode of HPLC was examined for determination of PEG 400 oligomers. The normal-phase system provided greater resolution for oligomers of PEGs. 相似文献
11.
Conventional silica columns dynamically modified with cetyltrimethylammonium ions were evaluated for the determination of
UV-absorbing bromide, nitrate, and nitrite in seawater samples. Cetyltrimethylammonium, which is a quaternary ammonium ion,
was dynamically introduced onto silica surfaces. The first layer of the modifier was introduced by electrostatic interaction,
whereas the second layer was introduced by hydrophobic interaction. The latter layer worked as the anion-exchange sites. The
modified conventional silica columns could be used for separation of inorganic anions. Separation of authentic mixture of
five anions was achieved within 17 min. The addition of 0.1 mM cetyltrimethylammonium ion to the eluent improved the repeatability
of the retention time. Seawater samples could be directly injected onto the prepared conventional silica columns, and bromide,
nitrate, and nitrite levels were determined to be 69, 0.13, and 0.016 ppm, respectively. 相似文献
12.
An electrostatic ion chromatographic (IC) method for rapid and direct determination of iodide in seawater is reported. Separation was achieved using a reversed-phase ODS packed column (250x4.6 mm I.D.) modified by coating with Zwittergent-3-14 micelles, with an eluent comprising an aqueous solution containing 0.2 mM NaClO4 and 0.3 mM Zwittergent-3-14 and using UV detection at 210 nm. Samples prepared by dissolving NaIO3, NaNO2, NaBr, NaBrO3, NaNO3, NaI, and NaSCN in artificial or real seawaters were analyzed using this IC system. Nitrite, iodate, bromide, bromate, and nitrate showed very little or no retention, while iodide and thiocyanate were well separated, being eluted within 6 and 16 min, respectively. The detection limit for iodide obtained by injecting 400 microL of sample was 0.011 microM (S/N = 3), and the precision values obtained by analyzing samples containing 0.1 or 0.3 microM iodide in real seawater samples were 2.3% RSD and 1.2% RSD, respectively. Direct determination of iodide in real seawater samples was possible using this proposed IC system. 相似文献
13.
Alister D. Muir Martin J. Reaney Andrew J. Aubin 《Journal of chromatography. A》1998,810(1-2):241-244
A rapid sensitive method has been developed for the detection and quantitation of poly(ethylene glycol) 300 (PEG 300) in long-chain free fatty acid mixtures that requires minimal sample preparation. The PEG 300 was separated from the free fatty acids by RP-HPLC using a water–tetrahydrofuran gradient. PEG and the free fatty acids were detected using evaporative light scattering detection. The minimum detectable level of PEG in a free fatty acid mixture was 0.0125%. 相似文献
14.
A system which combines column switching and concentration was developed. A binary eluent mechanism was developed to study the effect of high sample concentration matrix on retention time shifts of the trace analyte. Separation conditions were chosen according to this mechanism to reduce the retention time shift of ammonium in the presence of high concentration sodium ion: high concentration sulfuric acid (25 mmol/l) was used as the eluent, and a hydronium-selective column of high capacity--a CS12 column, was employed. Since the retention time shift was reduced, the interval between onset and the complete elution of a high concentration ammonium standard (10 mg/l) was directly defined as the column-switching time window, which greatly simplified the procedure for determining the time window. Results showed that for ammonium below 1 mg/l, 90% ammonium was introduced and concentrated. Detection limits of 12.8 microg/l were obtained for ammonium with sodium at 1000 mg/l. 相似文献
15.
An ion chromatographic method for rapid and direct determination of iodide in seawater samples is reported. Separation was achieved using a laboratory-made C30 packed column (100 mm × 0.32 mm i.d.) modified with polyoxyethylene oleyl ether, with an aqueous solution of 300 mM sodium chloride as eluent and using UV detection at 220 nm. Samples containing iodate, nitrate, iodide and thiocyanate were eluted within 8 min, and the relative standard deviations of the retention time, peak area and peak height were all smaller than 4.19% for all of the analyte anions. Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention time of analytes. When inorganic eluents, such as ammonium chloride, ammonium sulfate, lithium chloride, sodium chloride, sodium sulfate, magnesium chloride and magnesium sulfate were used, the retention time of analytes increased with increasing eluent concentration. The limit of detection of iodide was 19 μg l−1 (S/N = 3), while the limit of quantitation was 66 μg l−1 (S/N = 10). The present method was successfully applied to the rapid and direct determination of iodide in seawater samples. 相似文献
16.
Huang J Xue J Xiang K Zhang X Cheng C Sun S Zhao C 《Colloids and surfaces. B, Biointerfaces》2011,88(1):315-324
The surface of polyethersulfone (PES) membrane was modified by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol) (mPEG-PU-mPEG), which were synthesized through solution polymerization with mPEG Mns of 500 and 2000, respectively. The PES and PES/mPEG-PU-mPEG blended membranes were prepared through spin coating coupled with liquid-liquid phase separation. FTIR and (1)H NMR analysis confirmed that the triblock copolymers were successfully synthesized. The functional groups and morphologies of the membranes were studied by ATR-FTIR and SEM, respectively. It was found that the triblock copolymers were blended into PES membranes successfully, and the morphologies of the blended membranes were somewhat different from PES membrane. The water contact angles and platelet adhesion were decreased after blending mPEG-PU-mPEG into PES membranes. Meanwhile, the activated partial thromboplastin time (APTT) for the blended membranes increased. The anti-protein-fouling property and permeation property of the blended membranes improved obviously. SEM observation and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay proved the surfaces of the blended membranes promoted human hepatocytes adhesion and proliferation better than PES membrane. 相似文献
17.
Arrays of releasable micropallets with surrounding walls of poly(ethylene glycol) (PEG) were fabricated for the patterning and sorting of adherent cells. PEG walls were fabricated between the SU-8 pallets using a simple, mask-free strategy. By utilizing the difference in UV-transmittance of glass and SU-8, PEG monomer was selectively photopolymerized in the space surrounding the pallets. Since the PEG walls are composed of a cross-linked structure, the stability of the walls is independent of the pallet array geometry and the properties of the overlying solution. Even though surrounded with PEG walls, the individual pallets were detached from the array by the mechanical force generated by a focused laser pulse, with a release threshold of 6 microJ. Since the PEG hydrogels are repellent to protein adsorption and cell attachment, the walls localized cell growth to the pallet top surface. Cells grown in the microwells formed by the PEG walls were released by detaching the underlying pallet. The released cells/pallets were collected, cultured and clonally expanded. The micropallet arrays with PEG walls provide a platform for performing single cell analysis and sorting on chip. 相似文献
18.
Effects of solvent density on the solubility of polar probes which undergo specific interactions with poly(oxyethylene) are studied. The analysis of retention data on capillary columns coated with oligomeric poly(oxyethylene) stationary phases shows that, within the experimental error, the enthalpic contribution to the solubility is practically independent of variations in the solvent density. Average values of enthalpies of solute transfer are reported for different probes and temperatures. The observed systematic decrease of solubility with the increasing density is due to a change of entropy. Some thermodynamic consequences inferred from these general results are discussed. One relevant observation is that the influence of solvent's final groups must be negligible. This is even the case for oligomers with number-average degrees of polymerization as low as 13, hosting solutes capable of strong interactions with the end hydroxyl groups of linear poly(ethylene glycols). Possible explanations for this behavior are explored through molecular dynamics simulations of the liquid solvent. 相似文献
19.
20.
B. García‐Gaitn M. Del P. Prez‐Gonzlez A. Martínez‐Richa G. Luna‐Brcenas S. M. Nuo‐Donlucas 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4448-4457
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004 相似文献