首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fine and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a glycine–nitrate combustion process. La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes were prepared on dense Ce0.8Sm0.2O2−δ electrolyte substrates using a spin-coating technique by sintering at 900–1,000 °C. The electrode properties of La0.6Sr0.4Co0.2Fe0.8O3−δ were investigated by electrochemical impedance spectroscopy and chronopotentiometry techniques with respect to preparation conditions and the resulting microstructures. The results indicate a significant effect of the microstructure on the electrode processes and polarization characteristics. The oxygen adsorption and dissociation process acted as a larger contribution to the overall electrode polarization R p in magnitude compared with the charge transfer process due to relatively low porosity levels of the electrodes. It was detected that the grain size of the electrodes exhibited a crucial role on the electrocatalytic reactivity. At 800 °C, the electrode sintered at 950 °C attained a polarization resistance of 0.18 Ω cm2, an overpotential of 27 mV at a current density of 200 mA cm−2, and an exchange current density of 308 mA cm−2.  相似文献   

2.
An investigation of the torsion-rotation-vibration energies in the ν5 vibrational state in CH3CF3 has been carried out using infrared and mm-wave spectroscopy. The lowest frequency parallel fundamental band ν5 near 600 cm−1 has been measured at a resolution of 0.00125 cm−1 with Fourier transform spectroscopy for the two lowest torsional states v6=0 and 1. The cold band (v5=1, v6=0)←(v5=0, v6=0) showed no torsional splittings and looked much like a parallel band in a C3v molecule. The hot band (v5=1, v6=1)←(v5=0, v6=1) consisted of three distinct subbands, one for each torsional sublevel σ=0, +1, and −1. For the state (v5=1, v6=1), the torsional splitting was increased from ∼0.001 cm−1 to ∼0.022 cm−1 by torsion-mediated Fermi-type interaction primarily with the dark state (v5=0, v6=5). The effects of this coupling on the spectrum are striking in spite of the fact that the two interacting states are ∼100 cm−1 apart and differ by four units in v6. The large amplitude character of the state (v5=0, v6=5) is seen to be largely responsible for the unusual (k, σ) dependence of the energies in the state (v5=1, v6=1). The pure rotational spectrum in the state (v5=1, v6=0) has been measured between ∼50 and 370 GHz with Doppler-limited resolution; no σ-splitting was detected. The 3590 infrared and mm-wave frequencies measured here have been analyzed together with the 1494 measurements reported earlier by Wang et al. in an analysis of the vibrational ground state (2001, J. Mol. Spectrosc.205, 146-163). A good fit was obtained here by varying 36 parameters in a Hamiltonian which takes into account the interaction between the torsional stacks of levels for v5=0 and 1, as well as the (A1A2) splittings measured earlier for v5=0. The explicit treatment of the interstack interactions is shown to lead to significant changes in the parameters (V0,3, V0,6) that characterize the torsional potential for v5=0. These changes have been explained quantitatively by examining the contact transformation that is implicitly applied when the interstack coupling is neglected.  相似文献   

3.
本文用X射线粉末法测定了Li2K(IO3)3与Li2NH4(IO3)3的晶体结构和原子参数。发现Li3K(IO3)3,Li2NH4(IO3)3与Li2Rb(IO3)3同晶型,属单斜晶系,空间群为P21/α,每个单胞含有四个化合式量。室温的点阵常数分别为α=11.198?,b=11.046?,c=8.254?,β=111.53°,及α=11.327?,b=11.078?,c=8.341?,β=111.87°。讨论了二元化合物的形成与离子半径的关系。 关键词:  相似文献   

4.
IR spectra of the solution of SF6 molecules in liquid NF3 at 84 K have been recorded. In a solvent transmission window of 1500–1750 cm−1, two wide absorption bands with pronounced peaks in the high-frequency part are observed. The profile of these bands is explained by the influence of the resonance dipole-dipole (RDD) interaction of the states of the simultaneous transition ν1(SF6) + ν3(NF3) and ν2(SF6) + ν3(NF3) with the states (ν1 + ν3) and (ν2 + ν3) of the SF6 molecules, respectively. The use of three isotopic modifications 32SF6, 33SF6, and 34SF6 has allowed us to vary the resonance detuning and thus to change the strength of the RDD interaction. With the liquid near the melting point being represented as a close-packed cubic crystal, the profile was calculated and its spectral characteristics were determined. The frequencies of the main peaks coincide with the experimental values accurate to the error.  相似文献   

5.
The high resolution infrared spectrum of the mono-isotopic species F35Cl16O3 has been studied in the region of the 2ν4 overtone, from 2560 to 2680 cm−1. The perpendicular component is strong and clearly observed while the parallel component is very weak and almost completely hidden by the perpendicular one. Their origins differ by 12.6 cm−1, the being located at higher wavenumbers. The band is perturbed by the anharmonic interaction between the v4 = 2, l4 = ?2 and v2 = v4 = v5 = 1, l4 = l5 = ±1 excited states, both of E symmetry. In total 3157 transitions have been assigned, 83% of these to , 12% to , and 5% to . The three bands have been analyzed simultaneously, taking into account the Fermi resonance effective between the excited states of E symmetry. The ro-vibration parameters of the excited states have been obtained, including the deperturbed band origins of and , at 2628.5890(4) and 2619.3342(5) cm−1, respectively. The W245 anharmonic constant is equal to 4.0161(4) cm−1. The x44+g44 and x24+x45+g45 anharmonicity constants have been derived from the obtained band origins and those of ν4 and ν2 + ν5.  相似文献   

6.
xCeO2–30Bi2O3–(70−x) B2O3 glasses are synthesized by using the melt quench technique. A number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.15 to 1.61 eV, refractive index increases from 2.67 to 2.93 and density increases from 4.151 to 4.633 g/cm3. The decrease in band gap with CeO2 doping approaches the semiconductor behavior. FTIR spectroscopy reveals that incorporation of CeO2 into glass network helps to convert the structural units of [BO3] into [BO4] and results in Bi–O bond vibration of [BiO6].  相似文献   

7.
A FT-IR spectroscopic study was carried out in the region 4000–400 cm–1 for ZnSeNi and ZnSNi at room temperature. The data obtained were examined on the basis of the energy states calculations of the (3d)n configuration, based on the defect molecule approach. The present investigation reveals the transition from the ground state to the first two excited states namely3T13A2 and3T13T2 of Ni+2 (d8).  相似文献   

8.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

9.
The second overtone band 3ν1 of sulfur dioxide has been studied for the first time with high resolution rotation-vibration spectroscopy. About 3000 transitions involving about 900 upper state energy levels with have been assigned to the 3ν1 band. In the analysis, an effective Hamiltonian taking into account accidental interactions between the vibrational states (3 0 0), (2 2 0), and (0 4 1) was used. The Watson operator in A-reduction and Ir representation was used in the diagonal blocks of the Hamiltonian. As the result of analysis a set of parameters reproducing the initial experimental data with the rms = 0.00028 cm−1 was obtained.  相似文献   

10.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

11.
We report the synthesis, structure, microstructure, chemical stability in H2O and CO2, and electrical transport properties of an oxide ion-conducting perovskite-related structure Ba3In2MO8 (M = Zr, Ce, Zr0.5Ce0.5). Powder X-ray diffraction confirmed the formation of a simple cubic perovskite-like structure for Ba3In2ZrO8 (a = 4.205(9) ?), Ba3In2CeO8 (a = 4.234(1) ?), and Ba3In2Zr0.5Ce0.5O8 (a = 4.285(8) ?). The increase in lattice constant is consistent with the Shannon’s ionic radius trend. Among the three samples investigated, Ba3In2ZrO8 was found to be stable against reaction with pure CO2 at elevated temperature, while the Ce and 1:1 Zr and Ce compounds were unstable at 600 °C. Ba3In2ZrO8, Ba3In2CeO8, and Ba3In2Zr0.5Ce0.5O8 were found to be chemically unstable in H2O at about 50 °C. The bulk electrical conductivity of the samples prepared at different temperatures was found to be nearly the same; the total conductivity (bulk + grain–boundary + electrode) seems to change with sintering temperature. Both Ba3In2ZrO8 and Ba3In2CeO8, prepared at 1,400 °C, exhibited comparable electrical conductivity of about 6 × 10−3 S cm−1 at 800 °C, which is comparable to that of conventional Y2O3-doped ZrO2 electrolyte. These compounds are very promising electroltes, provided that their chemical and mechnical stabitities are improved without losing any ionic conductivity.  相似文献   

12.
Dense K4CuNb8O23 (KCN) modified 0.948K0.5Na0.5NbO3–0.052LiSbO3 (KNNLS) ceramics were prepared by conventional solid state reaction method. The effect of addition of K4CuNb8O23 liquid phase sintering aid on the phase structure and electrical properties of ceramics was studied. Results showed that K4CuNb8O23 induced a perovskite structure transition from coexistence of orthorhombic and tetragonal phases to orthorhombic symmetry. The addition of K4CuNb8O23 promoted the sintering of KNNLS ceramics. In particular, the K4CuNb8O23 addition to the KNNLS greatly improved the mechanical quality factor Qm value. The ceramics with x=0.8 sintered at 1090 °C possess the optimum properties (Qm=192, d33=135 pC/N, tan δ=0.024 and kp=0.357). These results indicate that the ceramic is a promising candidate for lead-free high-power piezoelectric devices, such as piezoelectric actuators, transformers and filter materials.  相似文献   

13.
The infrared spectra of isotopically pure CD235Cl2 have been recorded at a resolution of 0.0026 cm−1 (FWHM) in the range 600-1160 cm−1 with a Bruker IFS 120 HR Fourier transform interferometer. The absorption between 670 and 750 cm−1 is due to three fundamentals, ν3 (weak), ν7 (very weak), and ν9 (strong). A satisfactory analysis of the observed spectra has been obtained by including a c-Coriolis coupling between ν3 and ν9 and a b-Coriolis term between ν7 and ν9. Although no transitions could be observed for the very weak ν7 band, its band origin could be estimated from the Coriolis interaction with ν9. From the analysis of about 4200 assigned transitions of the ν3 and ν9 bands, excited state constants have been determined up to sextic terms. The Coriolis parameters obtained are compared to those calculated from a harmonic force field.  相似文献   

14.
The influence of hydrothermal modification of γ-Al2O3 on the properties of NiMo/γ-Al2O3 catalyst was investigated in this paper. The experimental results showed that the use of the modified γ-Al2O3 in the preparation of the NiMo/γ-Al2O3 catalyst led to the increase of the dispersion of the surface Mo and Ni oxides, favored the formation of the poly-molybdates and promoted the reduction of the active Mo oxides owing to the increase of the surface acidity of the modified γ-Al2O3. Therefore, the NiMo/γ-Al2O3 catalyst supported on the modified γ-Al2O3 exhibited a higher hydrodenitrogenation (HDN) activity than that supported on the untreated γ-Al2O3 in the temperature range of 300-340 °C.  相似文献   

15.
The LMDR (laser-microwave double resonance) spectroscopy with an intense electric field was applied to the ν5 (CF3 degenerate stretch) fundamental band of CDF3. The dipole moments and polarizability anisotropies in the ground and ν5 vibrational states were determined as follows.
  相似文献   

16.
17.
We have carried out systematic studies on well-characterized monodisperse Fe3O4/γ-Fe2O3 core/shell nanoparticles of 2-30 nm having a very narrow size distribution and possessing a uniquely mono-layer of surface γ-Fe2O3. This unique core-shell structure, probably having a disordered magnetic surface state, leads us to three key observations of unusual magnetic properties: i) a very large magnetic exchange anisotropy reaching over 7 × 106 erg/cm3 for the smaller particles, ii) exchange bias behavior in the magnetization data of the core/shell Fe3O4/γ-Fe2O3 nanoparticles, and iii) the temperature dependence of the coercive field following an unusual exponential behavior.  相似文献   

18.
The ν3 fundamental vibration-rotation band of carbon-13 enriched methane (13CH4) was recorded using a high-resolution vacuum infrared grating spectrograph. Forbidden transitions of this band are reported for the first time. Of the nearly 900 transitions identified, 560 are forbidden transitions and 347 of the forbidden transitions have 11 ≤ J ≤ 18. Pairs of forbidden and allowed transitions having the same upper-state energy levels were used to calculate 550 independent differences between ground-state term values. From these data, a least-squares analysis was used to calculate the following values for ground-state structure constants and their standard deviations (in cm?1):
βOhc = 5.240820 ± 0.000056
,
λOhc =?(1.0856 ± 0.0015) × 10?4
,
?Ohc = ?(1.4174 ± 0.0034) × 10?4
,
ηhc = ?(1.73 ± 0.37) × 10?11
. The 550 values for the ground-state combination differences retained for analysis can be reproduced with an overall standard deviation of 0.0155 using the stated values for the structure constants. The note added in proof refines the above constants by including the newly observed microwave data.  相似文献   

19.
The ν2 (CD3 symmetrical deformation) and ν5 (CD3 degenerate deformation) fundamental bands of CD3Br were studied by 9.4- and 10.4-μm CO2 laser Stark spectroscopy. Stark resonances originating from 28 and 53 rovibrational transitions of the ν2 and ν5 bands, respectively, were assigned for each of the isotopic species, CD379Br and CD381Br. These two bands were simultaneously analyzed with explicit inclusion of the ν2-ν5 Coriolis interaction, yielding precise molecular constants in the ν2 and ν5 excited states as well as the Coriolis coupling constant. The molecular constants obtained are consistent between the two isotopic species and are in good agreement with the results of high-resolution infrared studies. The band origins and dipole moments are
Groundν5
μ (D)1.653 511 (29)1.658 514 (23)
α (Å3)?0.77 (32)?0.58 (48)
  相似文献   

20.
The simple kagome-lattice band structure possesses Dirac cones, flat band, and saddle point with van Hove singularities in the electronic density of states, facilitating the emergence of various electronic orders. Here we report a titanium-based kagome metal CsTi3Bi5 where titanium atoms form a kagome network, resembling its isostructural compound CsV3Sb5. Thermodynamic properties including the magnetization, resistance, and heat capacity reveal the co...  相似文献   

CD379BrCD381Br
ν2991.396 82 (18)991.388 46 (17)cm?1
ν51055.469 00 (12)1055.466 32 (12)cm?1
μ01.830 42 (52)1.829 84 (47)D
μ21.829 93 (48)1.829 57 (46)D
μ51.832 23 (60)1.831 19 (56)D
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号