首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Linear solvation energy relationships (LSERs) were used to delineate which specific intermolecular interactions are responsible for changes in retention for a variety of well characterized analytes when acidic and basic additives were used in reversed phase HPLC. The effects of trifluoroacetic acid, triethylamine and a combination of trifluoroacetic acid and triethylamine on the LSERs were compared to those observed in the absence of additives. These effects were examined using four different mobile phase modifiers and five different stationary phases. Trifluoroacetic acid alone and in combination with triethylamine produced LSER regression coefficients nearly identical to those obtained with no additive present in the mobile phase. Triethylamine alone produced different LSER regression coefficients from the other systems unless the mobile phase contained trifluoroethanol as the mobile phase modifier, or the stationary phase consisted of a polymeric support.  相似文献   

3.
The linear solvation energy relationship (LSER) model was used to characterize interactions responsible for sorption of volatile organic compounds (VOCs) in air samples on six different solid-phase microextraction (SPME) fibers at 296K and zero relative humidity. The polydimethylsiloxane and polyacrylate fibers sorption data were also modeled at different relative humidities in the range of 10-90% and influence of water vapors on the extraction process is discussed. The LSER equations were obtained by a multiple regression of the distribution coefficients of 14 probe solutes on an appropriate SPME fiber against the solvation parameters of the solutes. The derived LSER equations successfully predicted the VOC distribution coefficients and the selectivity of individual SPME fibers for the various volatile solutes. The LSER approach coupled with SPME is a relatively simple and reliable tool to rapidly characterize the sorption mechanism of VOCs with various stationary phases and may potentially be applied to design and test new chromatographic materials for sampling or separation of VOCs.  相似文献   

4.
5.
A series of surface-confined ionic liquid (SCIL) stationary phases for high-performance liquid chromatography were synthesized in-house. The synthesized phases were characterized by the linear solvation energy relationship (LSER) method to determine the effect of residual linking ligands and the role of the cation and the anion on retention. Statistical analysis was utilized to determine whether the system coefficients returned from multiple linear regression analysis of chromatographic retention data for a set of 28 neutral aromatic probe solutes were significantly different. Examination of the energetics of retention via κκ plots agrees with the results obtained from the LSER analysis. Residual linking ligands were determined to contribute reversed-phase-type retention character to the chromatographic system. Furthermore, retention on the SCIL phases was observed to be more profoundly affected by the identity of the anion than by that of the cation.  相似文献   

6.
The linear solvation energy relationship equation developed by Abraham and coworkers was applied to the retention factors k of a series of 20 polar solutes on four chemically different RP-HPLC phases. Three of them were specially synthesized and are functionalized with ether, phenylsulfide or phenylsulfoxide groups. Their retention properties are compared with those of a nonpolar octadecylsiloxane (ODS) phase. The phase properties r, the excess molar refraction; s, the dipolarity; a and b, the hydrogen-bond basicity and acidity; and v, the cavity factor show significant differences on the four phases and are used here to suggest a classification of stationary phases based on the type of interactions that are important for the retention. The hydrophilic system properties r, s, a and b are the reason for different elution orders of a set of solutes on the four phases. The intrinsic hydrophobicity of the system, the v/A ratio (A is the surface coverage in μmol/m2), shows a dependence on the mobile phase composition as do the normalized phase properties r/v, s/v, a/v and b/v. Averaging the constants over a large span of mobile phase composition should be done very carefully. The LSER model is used to predict the elution order on the stationary phases for five phenols which show coelution on ODS. On the phenylsulfide phase they are resolved. Received: 3 December 1998 / Revised: 1 February 1999 / Accepted: 8 February 1999  相似文献   

7.
Linear solvation energy relationships (LSER model) was tested for the characterization of hypercrosslinked polystyrene (HCPS) stationary phases for high-performance liquid chromatography (HPLC). Analysis of LSER coefficients showed that hydrophobic and electrostatic interactions are the major contributors to retention on HCPS. Fluorine atoms in HCPS increase the fractions of both hydrophobic and electrostatic interactions in the retention. The utility of fluorinated HCPS in the separation of di-n-phthalate mixtures by reversed-phase liquid chromatography was demonstrated.  相似文献   

8.
Characterization of retention and selectivity differences between surfactants in micellar electrokinetic chromatography (MEKC) using linear solvation energy relationships (LSERs) has been given a significant amount of attention in the last four years. This report evaluates the validity of using the two LSER models that have been used to fit retention in MEKC in the literature. The results and the fit of the revised model and parameters developed by Abraham and coworkers are compared to the original model developed by Kamlet, Taft, and coworkers. LSERs can generally only be used as a comparative tool to describe the selectivity differences between surfactant systems used in MEKC. With this in mind, it was determined that the results of both models essentially provide the same information about these differences. However, the revised model and parameters have been found to yield a statistically better fit of the MEKC retention data as well as providing more chemically sound LSER coefficients.  相似文献   

9.
10.
L. Szepesy  V. Háda 《Chromatographia》2001,54(1-2):99-108
Summary Eight commercially available reversed-phase (RP) columns of widely different characteristics were evaluated and compared using the linear solvation energy relationships (LSER). Retention factors of 32 solutes of different types were determined under isocratic conditions using an acetonitrile-water (30∶70) mobile phase. Stationary phase properties were compared by the fitting coefficients of the LSER-based regression equations which are characteristic of the individual stationary phases and represent the extent of various molecular interactions contributing to the retention process. The good agreement between the calculated and measured logk values for different type of compounds support the adequacy and applicability of the LSER model to describe chromatographic retention. Characterization of column performance for the separation of various type of compounds was established by the determination of the different selectivity factors representing hydrophobic selectivity, polar selectivity and specific selectivity.  相似文献   

11.
12.
Utilizing linear solvation free energy relationship methodology, a novel pyridinium bromide surface confined ionic liquid (SCIL) stationary phase was characterized under normal phase high-performance liquid chromatographic conditions. A limited set of neutral aromatic probe solutes were utilized to rapidly assess the utility of the LSER model, using mobile phases of hexane modified with 2-propanol. The excellent correlation of the global fit across the mobile phase composition range used in this study for the experimental and calculated retention values (R(2)=0.994) indicates that the LSER model is an appropriate model of characterizing this polar bonded phase under normal phase conditions. For a limited subset of compounds, retention on the pyridinium bromide SCIL stationary phase is more highly correlated with that obtained on a cyano column than on a diol column under NP conditions.  相似文献   

13.
A new HPLC stationary phase based on n-butylimidazolium bromide has been characterized by a linear solvation energy relationship (LSER) approach in the binary acetonitrile/water mobile phases. The retention properties of the stationary phase were systematically evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phase. The results and further comparisons with conventional reversed phase system confirm that retention properties are similar to phenyl phases in acetonitrile/water mixtures. The results obtained with acetonitrile/water mixtures are also compared with results obtained using methanol/water mixtures.  相似文献   

14.
Linear solvation energy relationship (LSER) amended by the introduction of a molecular electronic factor was employed to establish quantitative structure-retention relationship of biopartitioning micellar chromatography (BMC) system. The chromatographic indices, log k, were determined by LC on a C18 column for sixty-five structurally diverse compounds, including neutral (32), acidic (19) and basic (14) compounds. Two micellar mobile phases composed of 0.04 mol L?1 polyoxyethylene (23) lauryl ether (Brij35) were adjusted by phosphate buffer to pH 7.4 and pH 6.5, respectively. When the mean net charge per molecule (δ) was introduced into LSER as the sixth variable, the LSER regression coefficients and predictive capability were significantly improved. However, the δ coefficients of the amended LSER were quite different for acidic and basic compounds, indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds in the studied BMC system. This may attribute to the extra interaction for ionized compounds with the free silanol groups in the stationary phase. The comparison of calculated and experimental retention indices suggested that the amended LSER could reproduce adequately the retention of the structurally diverse solutes investigated in BMC.  相似文献   

15.
16.
17.
The purpose of the present work was to systematically study the chromatographic behaviour of different aromatic stationary phases in a subcritical fluid mobile phase. We attempted to assess the chemical origin of the differences in retention characteristics between the different columns. Various types of aromatic stationary phases, all commercially available, were investigated. The effect of the nature of the aromatic bonding on interactions between solute and stationary phases and between solute and carbon dioxide-methanol mobile phase was studied by the use of a linear solvation energy relationship (LSER): the solvation parameter model. This study was performed to provide a greater knowledge of the properties of these phases in subcritical fluid chromatography, and to allow a more rapid and efficient choice of aromatic stationary phase in regard of the chemical nature of the solutes to be separated. Charge transfer interactions naturally contribute to the retention on all these stationary phases but are completed by various other types of interactions, depending on the nature of the aromatic group. The solvation vectors were used to compare the different phase properties. In particular, the similarities in the chromatographic behaviour of porous graphitic carbon (PGC), polystyrene-divinylbenzene (PS-DVB) and aromatic-bonded silica stationary phases are evidenced.  相似文献   

18.
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk IL/water values by chromatographic methods is also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号