首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance and force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.  相似文献   

2.
The charge transport characteristics of 11 tailor-made dithiol-terminated oligo(phenylene-ethynylene) (OPE)-type molecules attached to two gold electrodes were studied at a solid/liquid interface in a combined approach using an STM break junction (STM-BJ) and a mechanically controlled break junction (MCBJ) setup. We designed and characterized 11 structurally distinct dithiol-terminated OPE-type molecules with varied length and HOMO/LUMO energy. Increase of the molecular length and/or of the HOMO-LUMO gap leads to a decrease of the single-junction conductance of the linearly conjugate acenes. The experimental data and simulations suggest a nonresonant tunneling mechanism involving hole transport through the molecular HOMO, with a decay constant β = 3.4 ± 0.1 nm(-1) and a contact resistance R(c) = 40 kΩ per Au-S bond. The introduction of a cross-conjugated anthraquinone or a dihydroanthracene central unit results in lower conductance values, which are attributed to a destructive quantum interference phenomenon for the former and a broken π-conjugation for the latter. The statistical analysis of conductance-distance and current-voltage traces revealed details of evolution and breaking of molecular junctions. In particular, we explored the effect of stretching rate and junction stability. We compare our experimental results with DFT calculations using the ab initio code SMEAGOL and discuss how the structure of the molecular wires affects the conductance values.  相似文献   

3.
In order to design molecular electronic devices with high performance and stability, it is crucial to understand their structure-to-property relationships. Single-molecule break junction measurements yield a large number of conductance-distance traces, which are inherently highly stochastic. Here we propose a weakly supervised deep learning algorithm to classify and segment these conductance traces, a method that is mainly based on transfer learning with the pretrain-finetune technique. By exploiting the powerful feature extraction capabilities of the pretrained VGG-16 network, our convolutional neural network model not only achieves high accuracy in the classification of the conductance traces, but also segments precisely the conductance plateau from an entire trace with very few manually labeled traces. Thus, we can produce a more reliable estimation of the junction conductance and quantify the junction stability. These findings show that our model has achieved a better accuracy-to-manpower efficiency balance, opening up the possibility of using weakly supervised deep learning approaches in the studies of single-molecule junctions.  相似文献   

4.
Molecular electronics is an important field for the application of nanotechnologies with an ultimate goal of building functional devices using single molecules or molecular arrays to realize the same functionality as macroscopic devices. To attain this goal, reliable techniques for measuring and manipulating electron transfer processes through single molecules are essential. There are various techniques and many environmental factors influencing single-molecule electronic conductance measurements. In this review, we first provide a detailed introduction and classification of the current well-accepted techniques in this field for measuring single-molecule conductance. All available techniques are summarized into two categories: the fixed junction technique and break junction technique. The break junction technique involves repeatedly forming and breaking molecular junctions by mechanically controlling a pair of electrodes moving into and out of contact in the presence of target molecules. Single-molecule conductance can be determined from the conductance plateaus that appear in typical conductance decay traces when molecules bind two electrodes during their separation process. In contrast, the fixed junction technique is to fix the distance between a pair of electrodes and measure the conductance fluctuations when a single molecule binds the two electrodes stochastically. Both techniques comprise different application methods and have been employed preferentially by different groups. Specific features of both techniques and their intrinsic advantages are compared and summarized in Section 4.  相似文献   

5.
The electrical conductance of ds-DNA duplexes containing 8-14 base pairs modified at both ends with a -(CH(2))(6)-SH linker was measured in a buffered aqueous solution using electrochemically controlled distance tunneling spectroscopy. The tunneling experiment with self-complementary 5'-(GC)(n)()-3'-(CH(2))(6)-SH (n = 4-7) duplexes attached covalently to a gold STM tip and a Au(111) electrode shows a wide distribution of currents independent of the ds-DNA length. The voltage-induced horizontal orientation of ds-DNA within the junction results in decreased electrical conductance. The lower currents are also observed for ds-DNA molecules containing a single CA base mismatch.  相似文献   

6.
The symmetry of a molecule junction has been shown to play a significant role in determining the conductance of the molecule, but the details of how conductance changes with symmetry have heretofore been unknown. Herein, we investigate a naphthalenedithiol single-molecule system in which sulfur atoms from the molecule are anchored to two facing gold electrodes. In the studied system, the highest single-molecule conductance, for a molecule junction of 1,4-symmetry, is 110 times larger than the lowest single-molecule conductance, for a molecule junction of 2,7-symmetry. We demonstrate clearly that the measured dependence of molecule junction symmetry for single-molecule junctions agrees with theoretical predictions.  相似文献   

7.
We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ, resulting in formation of a direct covalent σ bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated π system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the π system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G(0) = 2e(2)/h). Junctions formed with methylene-terminated oligophenyls with two to four phenyl units show a 100-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling, as they exhibit an exponential dependence of conductance on oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show near-resonant transmission, with a crossover to tunneling for the longer oligomers.  相似文献   

8.
The electronic transport properties of single [2,2]paracyclophane molecules directly connected to gold and platinum electrodes have been investigated both theoretically and experimentally by using first-principles quantum transport simulations and break-junction experiments. For comparison, investigations on [3,3]- and [4,4]-paracyclophanes have also been performed. Our calculations show that the strength of the π-π interaction in paracyclophanes is critically dependent on the inter-ring distance. In contrast to [4,4]paracyclophane in which the π-π interaction is very weak due to the large inter-ring distance, the π-π interaction in [2,2]- and [3,3]-paracyclophanes is rather strong and dominates the electronic transport properties. In particular, for the asymmetric Au-[2,2]paracyclophane-Au junction in which the [2,2]paracyclophane molecule is connected to each gold electrode through a Au adatom and the two Au adatoms are attached in η(1)-fashion to two carbon atoms in the benzene backbones connecting with different ethylene groups, the transmission coefficient at the Fermi level is calculated to be 1.0 × 10(-2), in excellent agreement with experiments. When the gold electrodes are replaced by platinum, the calculated transmission coefficient at the Fermi level of the symmetric Pt-[2,2]paracyclophane-Pt junction with one Pt adatom used as the linker group is increased to 0.83, demonstrating that the π-π stacking in [2,2]paracyclophane is efficient for electron transport when the molecule-electrode interfaces are electronically transparent. This is confirmed by our preliminary experimental studies on the Pt-[2,2]paracyclophane-Pt junctions, for which the low-bias junction conductance has reached 0.40 ± 0.02 G(0) (G(0) is the conductance quantum). These findings are helpful for the design of molecular electronic devices incorporating π-π stacking molecular systems.  相似文献   

9.
The electrical conductance of single n-alkanethiol and alpha,omega-alkanedithiol molecules was measured via in situ distance tunneling spectroscopy in aqueous 0.1 M KOH solution. The statistical analysis of the conductance values show that the alpha,omega-alkanedithiol molecule trapped in the STM break junction can adopt two distinct geometries that result in "lower" and "higher" conductivity values. In contrast, n-alkanethiol molecules trapped in the junction show only a single conductivity value characteristic for a particular molecule. Furthermore, the "lower" conductivity value determined for alpha,omega-alkanedithiol is virtually identical to the electrical conductivity of the n-alkanethiol containing the same number of atoms in the backbone. Moreover when the STM tip is polarized to electrochemical potential preventing a chemical reaction between the terminal -SH group and Au, only "lower" conductivity values are observed for alpha,omega-alkaneditiols.  相似文献   

10.
The electrical characterization on single-molecule benzene dithiols with different connectivities showed that the meta-BDT has the lowest conductance, which suggested that there is destructive quantum.  相似文献   

11.
We have designed and synthesized a pyridine-based tripodal anchor unit to construct a single-molecule junction with a gold electrode. The advantage of tripodal anchoring to a gold surface was unambiguously demonstrated by cyclic voltammetry measurements. X-ray photoelectron spectroscopy measurements indicated that the π orbital of pyridine contributes to the physical adsorption of the tripodal anchor unit to the gold surface. The conductance of a single-molecule junction that consists of the tripodal anchor and diphenyl acetylene was measured by modified scanning tunneling microscope techniques and successfully determined to be 5 ± 1 × 10(-4)G(0). Finally, by analyzing the transport mechanism based on ab initio calculations, the participation of the π orbital of the anchor moieties was predicted. The tripodal structure is expected to form a robust junction, and pyridine is predicted to achieve π-channel electric transport.  相似文献   

12.
Understanding the quantum effect in the cross-conjugated system is of fundamental significance in molecular electronics. In this study, four molecules Xa-O, Xa, BP and BP-O were synthesized to investigate the destructive quantum interference(DQI) of a carbonyl bridge. The single-molecule conductance measured by the scanning tunneling microscope break junction(STM-BJ) technique demonstrates an increase in the conductance from molecule BP-O to molecule Xa-O as the cross-conjugated system is extended. Theoretical calculations show that the explicit DQI feature is presented in BP-O but absent in Xa-O, which indicates the removal of DQI in the restrained structures and results in the conductance enhancement in Xa-O.  相似文献   

13.
Based on the first principle,electrical properties of a molecular junction consisting of pyrene-1,8-dithiol molecule and gold surface have been investigated. The cluster of three gold atoms is used to simulate the gold surface. Density functional theory is employed to obtain the electronic structures of the molecule and the extended molecule. Then the frontier orbital theory and the perturbation theory are used to determine the interaction energy between the molecule and the gold surface quantitatively. The elastic Green function method is applied to study the current-voltage properties of the molecular junction. Numerical results show that the sulfur atoms can be chemically absorbed on the gold surface and the bonding between the molecule and gold is mainly covalent-typed. The fermienergy of the extended molecular system lies between the HOMO and the LUMO and closer to the HOMO of the system. When the external applied bias is lower than 1 V,there is a current gap for the molecular junction. With the increasing of the bias,the conductance of the junction exhibits plateaus. These electrical properties are closely related with the electronic structures of the molecular junction. The extended molecular orbits have great contribution to the charge transport. Localized molecular orbits give little contribution to the current while charge transport is taken place by tunneling.  相似文献   

14.
We studied the electronic and conductance properties of two thiophene–curcuminoid molecules, 2‐thphCCM ( 1 ) and 3‐thphCCM ( 2 ), in which the only structural difference is the position of the sulfur atoms in the thiophene terminal groups. We used electrochemical techniques as well as UV/Vis absorption studies to obtain the values of the HOMO–LUMO band gap energies, showing that molecule 1 has lower values than 2 . Theoretical calculations show the same trend. Self‐assembled monolayers (SAMs) of these molecules were studied by using electrochemistry, showing that the interaction with gold reduces drastically the HOMO–LUMO gap in both molecules to almost the same value. Single‐molecule conductance measurements show that molecule 2 has two different conductance values, whereas molecule 1 exhibits only one. Based on theoretical calculations, we conclude that the lowest conductance value, similar in both molecules, corresponds to a van der Waals interaction between the thiophene ring and the electrodes. The one order of magnitude higher conductance value for molecule 2 corresponds to a coordinate (dative covalent) interaction between the sulfur atoms and the gold electrodes.  相似文献   

15.
A network composed of gold nanoparticles covered with diarylethene dithiophenols was prepared on an interdigitated nanogapped gold electrode to show the reversible photoswitching of the conductance due to the photochromism of the diarylethene molecules induced by UV and visible light.  相似文献   

16.
The electronic transport properties of two kinds of fused dithia-heterocyclic compounds, 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b′]dithiophene (THBDT) and benzo[1,2-b:4,5-b]dithiophene (BDT), connected to gold and platinum electrodes are investigated using a self-consistent abinitio approach that combines the non-equilibrium Green’s function formalism with density functional theory. Our calculations show that the transmission at the Fermi level of the Au–THBDT–Au junction, where the THBDT molecule is connected to two gold electrodes through a gold adatom on each side, is 3.1 × 10−2, in good agreement with the experimentally measured value (1.2 × 10−2). Replacement of the gold electrodes with platinum electrodes can improve the junction stability but cannot increase the zero-bias junction conductance. In contrast, due to the enhanced conjugation in BDT and the better molecule–electrode coupling, both the transmission and the stability of the Pt–BDT–Pt junction are improved significantly, demonstrating the close relation between the device performance and the device structure.  相似文献   

17.
The electromechanical properties of a single molecule covalently attached to two gold electrodes are studied by simultaneously measuring the conductance and the force during the stretching of the molecule. The conductance, the spring constant of the molecular junction, and the dependence of the conductance on the stretching force are determined. Like the conductance, the spring constant of a molecule depends also on the molecule-electrode contacts. The forces required to break the molecule-gold contacts are 1.5 nN for alkanedithiols and 0.8 nN for 4,4' bipyridine, indicating that the breakdowns take place at the Au-Au bond and at the N-Au bond, respectively.  相似文献   

18.
We report an effective modulation of the quantum transport in molecular junctions consisting of aggregation‐induced‐emission(AIE)‐active molecules. Theoretical simulations based on combined density functional theory and rate‐equation method calculations show that the low‐bias conductance of the junction with a single tetraphenylethylene (TPE) molecule can be completely suppressed by strong electron–vibration couplings, that is, the Franck‐Condon blockade effect. It is mainly associated with the low‐energy vibration modes, which is also the origin of the fluorescence quenching of the AIE molecule in solution. We further found that the conductance of the junction can be lifted by restraining the internal motion of the TPE molecule by either methyl substitution on the phenyl group or by aggregation, a mechanism similar to the AIE process. The present work demonstrates the correlation between optical processes of molecules and quantum transport in their junction, and thus opens up a new avenue for the application of AIE‐type molecules in molecular electronics and functional devices.  相似文献   

19.
In this work, the binding sites of carboxylic acid binding to Cu electrode are explored by electrochemical jump-to-contact STM break junction. Single molecular conductance of benzene-based molecules with ending groups of carboxylic acid, carbonyl and hydroxyl are measured and compared. The conductance values of 1,4-benzenedicarboxaldehyde can be found in those of 1,4-benzenedicarboxylic acid, which shows that carboxylic acid can bind to Cu electrode through carbonyl group. Carboxylic acid can also bind to the electrode through carboxylate group, and gives out larger conductance values than those of carbonyl group. However, molecule with hydroxyl group is difficult to form single molecular junction with Cu. The current work demonstrates that the carboxylic acid can bind to the electrode through carbonyl and carboxylate groups, and a new anchoring group of carbonyl group can be used to form effective single molecular junction.  相似文献   

20.
Morris CA  Chen CC  Baker LA 《The Analyst》2012,137(13):2933-2938
We report scanning electrochemical microscopy-scanning ion conductance microscopy (SECM-SICM) experiments that describe transport of redox active molecules which emanate from single pores of a track-etch membrane. Experiments are performed with electrodes which consist of a thin gold layer deposited on one side of a nanopipet. Subsequent insulation of the electrode with parylene results in a hybrid electrode for SECM-SICM measurements. Electrode fabrication is straightforward and highly parallel. For image collection, ionic current measured at the nanopipet both controls the position of the electrode with respect to the membrane surface and reports the local conductance in the vicinity of the nanopipet, while faradaic current measured at the Au electrode reports the presence of redox-active molecules. Application of a transmembrane potential difference affords additional control over migration of charged species across the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号