共查询到16条相似文献,搜索用时 82 毫秒
1.
2.
介绍迈克尔逊干涉仪原理在测微小位移中的应用。确定一种锆钛酸铅镧压电陶瓷的压电常数d31,得到了一种测d31的可行可靠的新方法。 相似文献
3.
4.
5.
6.
7.
《光学技术》2015,(2):156-161
为了实现大量程、高精度测量系统的快速驱动与定位,结合双频激光干涉仪、可回收废气的空气静压导轨、精密滚珠丝杆以及伺服控制系统,研制了一套定位精度高、重复性好的快速精密定位系统。该系统以双频激光干涉仪为测长基准,实时反馈系统工作台位置信息;采用余气回收式空气静压导轨克服了传统气浮导轨余气对激光干涉测量光路系统的影响;在定位过程中引入PID运动控制技术,通过调节伺服控制器的PI参数使系统拥有快速平稳的响应特性。经实验测试,在500mm行程范围内,该系统的轴线双向定位精度可以达到0.266μm,重复定位精度可以达到0.173μm,具有较好地快速响应特性。应用所研制的精密定位系统对一维直线光栅样品进行了扫描,并与用Olympus共焦显微镜测得的数据进行了比对,表明系统具备良好的轴向定位能力。 相似文献
8.
激光光源具有单色性好、亮度高、方向性强和相干性强等优势,所以基于干涉原理对激光光谱进行积分可以应用于微位移测量领域。在重力方法探测过程中,因地质结构不同引起万有引力差异而造成的探测质量块位移十分微小,通常为纳米级,所以研制高精度纳米级微位移测量系统尤为重要。然而传统电容位移测量法在防止电磁干扰等方面存在不足。相比较而言,光学干涉法具备抗电磁干扰、环境适应性强等优点,且精度不亚于电容法。传统干涉系统光路复杂、难于集成,对重力仪的小型化与集成化不利。所以研制一种结构紧凑的光学干涉系统用于实现纳米级微位移测量成为亟需。基于可变相位延迟的激光干涉式方法,能够实现亚纳米级微位移测量,较传统干涉系统具备结构紧凑、易于集成的优势。本微位移测量系统由半导体激光器、起偏器、检偏器、楔形双折射晶体组和光谱仪组成。研究从以下方面展开:首先是确定测量系统方案,提出了偏振光干涉双路结构,以楔形双折射晶体组作为核心器件,将晶体间相对位移转化为o光和e光的差别化相位延迟,并对激光光谱进行积分,进而将位移变化转变为合成光强的变化;其次是建立测量位移物理模型,根据设计的双折射晶体组几何结构、位移过程与光路,确定光强变化与待测位移量之间的关系;第三是系统参数优化,为了使系统的测量误差和量程满足实际需求,利用已建立的物理模型,将测量误差和量程分别与晶体切割角度α、激光器激射波长λ建立函数关系。根据应用需求,确定适当的误差和量程取值范围,进而得到角度α和波长λ取值范围;最后加工晶体、搭建系统并进行测试。具体即以α和λ为调控参量,联合考虑“近似线性化”和“激光器光强波动误差”对系统量程进行优化仿真。同样,联合考虑“激光器光强波动误差”和“激光器波长波动误差”,并利用“系统最大位移量”(与量程有关)对系统测量误差进行优化仿真。最终确定钒酸钇晶体切割角度α为20°,激光器激射波长λ为635 nm。实验中,以10 nm为间隔利用压电陶瓷设置位移量进行位移测试,包括:系统的线性标定、系统量程和测量误差测试。另外,在保持待测位置不变的条件下,利用本位移测量系统进行了2 h不间断测量,并通过阿伦方差确定了系统的位移探测下限。实验结果表明,位移量程范围大于150 nm,位移测量误差约0.5 nm,位移探测下限为0.32 nm@23 s,探测线性度判定系数(R2)为0.999 85。综上所述,以自制楔形双折射晶体组作为核心器件的可变相位延迟激光干涉式微位移测量系统,可作为重力探测中的质量块位移测量单元。与电容法相比具有更强的环境适应性;与传统干涉系统相比具有结构简易、光路紧凑等优点,便于重力仪的小型化与集成化。 相似文献
9.
10.
11.
12.
13.
为了满足冷原子干涉实验对时序控制的需求,设计并实现了一个基于LABVIEW软件的激光时序控制DDS系统,其工作过程为通过设计的LABVIEW上位机软件输入需要产生的频率和频率间隔时间,ARM芯片根据LABVIEW软件发送来的控制信息实现对射频信号芯片的控制,CPLD芯片用来控制射频信号之间的时间间隔,最后DDS芯片产生与控制信息相对应的射频信号。与目前同类装置相比,系统实现了跳频时间和频率更加精确和工作稳定性更好。经过系统的调试分析以及性能测试,DDS跳频系统能够满足原子干涉仪激光时序控制需求。通过测试DDS装置,DDS装置能够输出准确输出射频频率值,并且射频频率时间间隔能精确到微秒。DDS装置可以有效控制冷原子干涉仪的激光时序,在探询时间为120毫秒且重复率为2.2赫兹的情况下,冷原子重力仪的重力测量灵敏度达到 。 相似文献
14.
利用EAST装置单道远红外HCN激光干涉仪测量了等离子体中心道(R=1.82m)线平均电子密度。通过充气加料连续提升主等离子体密度,首次在EAST装置上观察到偏滤器等离子体的三种不同状态:低再循环(偏滤器靶板处等离子体温度较高,密度较低),高再循环(偏滤器靶板处等离子体温度较低,密度较高)和脱靶(偏滤器靶板处等离子体温度和密度都很低)等离子体状态。分析了EAST偏滤器在这三种不同状态下的物理现象。 相似文献
15.
利用EAST装置单道远红外HCN激光干涉仪测量了等离子体中心道(R=1.82m)线平均电子密度。通过充气加料连续提升主等离子体密度,首次在EAST装置上观察到偏滤器等离子体的三种不同状态:低再循环(偏滤器靶板处等离子体温度较高,密度较低),高再循环(偏滤器靶板处等离子体温度较低,密度较高)和脱靶(偏滤器靶板处等离子体温度和密度都很低)等离子体状态。分析了EAST偏滤器在这三种不同状态下的物理现象。 相似文献
16.
在栅网结构上设计的频率选择表面能够同时实现红外高透过率和毫米波带通的物理特性. 为了提高其光学透过率, 降低表面电阻, 抑制高次衍射能量对光学系成像质量的影响, 本文通过分析基于栅网结构的频率选择表面衍射光强和表面电流, 提出一种新型基于混合周期栅网结构的频率选择表面. 计算及实验结果均表明: 在实现稳定的毫米波带通滤波的同时, 基于混合周期栅网结构的频率选择表面红外透过率提高了5%以上, 表面电阻平均降低了4 Ω, 有效地抑制了因高次衍射能量集中分布而对红外光学系统成像质量的影响. 相似文献