首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A first-order invariant Einstein-Cartan structure is a Lagrangian structure on a differential manifold defined by a generally invariant Lagrangian depending on a metric field, a connection field, and the first derivatives of these fields. Moreover, it is assumed that the metric and connection fields satisfy the so-called compatibility condition. In this paper the problem of finding all such invariant Einstein-Cartan structures is discussed. It is shown that each Lagrangian of these structures depends only on certain tensors constructed from the metric and the connection fields, which means that all the Lagrangians can be described within the framework of the classical theory of invariants. The maximal number of functionally independent Lagrangians is determined as a function of the dimension of the underlying manifold.  相似文献   

2.
U. Kasper 《Annalen der Physik》1976,488(4):317-320
If a tetrad theory is derivable from a variational principle with a Lagrangian ?? of the form ?? = ??F+??M 6 tetrad components will be defined by the vacuum equations if the energy momentum tensor is symmetric. Therefore, we look for a realisation of a programme proposed in a little different way by TREDER according to which the 16 tetrad field equations should degenerate to 10 equations for the Riemannian metric if boson fields are the only source of the gravitational field.  相似文献   

3.
A gravitational field can be seen as the anholonomy of the tetrad fields. This is more explicit in the teleparallel approach, in which the gravitational field-strength is the torsion of the ensuing Weitzenböck connection. In a tetrad frame, that torsion is just the anholonomy of that frame. The infinitely many tetrad fields taking the Lorentz metric into a given Riemannian metric differ by point-dependent Lorentz transformations. Inertial frames constitute a smaller infinity of them, differing by fixed-point Lorentz transformations. Holonomic tetrads take the Lorentz metric into itself, and correspond to Minkowski flat spacetime. An accelerated frame is necessarily anholonomic and sees the electromagnetic field strength with an additional term.  相似文献   

4.
A variational formalism of tetrad gravitation theory is developed in the Weyl-Cartan space with independent variations in the tetrad coefficients, metric tensor components, and affine connectivity coefficients that considers the Weyl condition imposed on the nonmetricity based on the method of undetermined Lagrange multipliers. The gravitational field equations are derived for the Lagrangian comprising all possible quadratic convolutions of curvature, torsion, and nonmetricity tensors in addition to the linear component. Differential identities are obtained for the general gravitational Lagrangian in the Weyl-Cartan space. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 56–59, June, 2006.  相似文献   

5.
A new Lagrangian theory of gravitation in which the metric and the arbitrary affine connection are regarded as independent field variables has been considered. Making use of the pure geometrical objects only from the variational principle the empty field equations are derived. It is shown that the metric obeys the ordinary Einstein equations of general relativity. However, the covariant derivative of the metric tensor does not vanish, so that the vector's length is generally nonintegrable under the parallel displacement. The torsion trace vector turns out to be the natural dynamical variable, satisfying the Maxwell-like equations with tensor of homothetic curvature as the Maxwell tensor. The equations of motion are explored; they are shown to be identical to the motion of electric charge under the Lorentz force. The conservation laws are discussed.  相似文献   

6.
Diakonov formulated a model of a primordial Dirac spinor field interacting gravitationally within the geometric framework of the Poincaré gauge theory (PGT). Thus, the gravitational field variables are the orthonormal coframe (tetrad) and the Lorentz connection. A simple gravitational gauge Lagrangian is the Einstein–Cartan choice proportional to the curvature scalar plus a cosmological term. In Diakonov?s model the coframe is eliminated by expressing it in terms of the primordial spinor. We derive the corresponding field equations for the first time. We extend the Diakonov model by additionally eliminating the Lorentz connection, but keeping local Lorentz covariance intact. Then, if we drop the Einstein–Cartan term in the Lagrangian, a nonlinear Heisenberg type spinor equation is recovered in the lowest approximation.  相似文献   

7.
8.
A review of the teleparallel equivalent of general relativity is presented. It is emphasized that general relativity may be formulated in terms of the tetrad fields and of the torsion tensor, and that this geometrical formulation leads to alternative insights into the theory. The equivalence with the standard formulation in terms of the metric and curvature tensors takes place at the level of field equations. The review starts with a brief account of the history of teleparallel theories of gravity. Then the ordinary interpretation of the tetrad fields as reference frames adapted to arbitrary observers in space–time is discussed, and the tensor of inertial accelerations on frames is obtained. It is shown that the Lagrangian and Hamiltonian field equations allow us to define the energy, momentum and angular momentum of the gravitational field, as surface integrals of the field quantities. In the phase space of the theory, these quantities satisfy the algebra of the Poincaré group.  相似文献   

9.
U. Kasper 《Annalen der Physik》1978,490(3):233-240
We point out that the gravitational field taken by itself cannot be considered as a gauge field. Only an affinity and not a metric can serve as a gauge field. Originally, metric and affinity are completely independent of each other. This fact allows in a natural way to formulate a restricted principle of relativity, according to which only fermion fields may show that there exist a priori distinguished frames of reference. Furthermore, we can couple the gravitational field to boson and fermion fields such that the flat metric or tetrads orthonormalized with respect to this flat metric appearing in the special relativistic matter Lagrangian, are replaced by a Riemannian metric and tetrads orthonormalized with respect to this metric (principle of most minimal gravitational coupling). This coupling principle is a strong restriction on the existence of independent boson fields. Only scalar and vector fields and their different pseudoquantities are possible as independent fields. Boson fields of higher rank are to be considered as fusions of these (pseudo)scalar and (pseudo)vector fields. Theire field equations follow from those of the (pseudo)scalar and (pseudo)vector fields.  相似文献   

10.
It is shown that a projectively invariant Lagrangian field theory based on linear non-symmetric connections in space-time and arbitrary source fields is equivalent to Einstein's standard theory of gravitation coupled to a source Lagrangian depending solely on the original source fields. A key point is that, as in the case of Lagrangian field theories based on symmetric connections in space-time, the Euler-Lagrange field equations uniquely determine the projective invariant part of the linear connection in terms of the metric, their first-order derivatives, the source fields, and their conjugate momenta.  相似文献   

11.
12.
13.
We give a modification of the Palatini Lagrangian for the free gravitational field that yields the vanishing of the torsion as a result of the field equations and requires only the assumption of the symmetry of the metric. We transcribe this Lagrangian into the tetrad formalism and show how the tetrad form of the Einstein field equations follows from it. Some remarks on possible generalization to a theory with nonvanishing torsion in the presence of matter conclude the paper.An earlier version of the results of this paper are found in [6].On leave from the Department of Physics, Boston University, Boston, Massachusetts.  相似文献   

14.
Using the notion of torsion potentials, the duality between antisymmetric tensor fields and scalar fields is discussed. First-order actions with these fields, the connection and the metric as independent variables are presented.  相似文献   

15.
An ability to analyze the geometrodynamic degrees of freedom and initial-data formulation is central to the canonical quantization of gravity. In the metric theory of gravity York provided the most powerful technique to analyze the dynamic degrees of freedom and to solve the initial-data problem. In this paper we extend York's analysis to tetrad gravity. Such an extension is necessary for the quantization of gravity when coupled to a half-integer-spin field. We present a comparative analysis of the geometric information carried by (1) a 3-metric of an initial hypersurface and (2) the spacelike triad of a time-gauged tetrad. We apply the tetrad initial-data formulation to Ashtekar's connection variables, and provide a comparison with other alternative choices of canonical tetrad variables.  相似文献   

16.
Defining a spin connection is necessary for formulating Dirac's bispinor equation in a curved space-time. Hestenes has shown that a bispinor field is equivalent to an orthonormal tetrad of vector fields together with a complex scalar field. In this paper, we show that using Hestenes' tetrad for the spin connection in a Riemannian space-time leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field Ψ is mapped to a set of SL(2,RU(1) gauge potentials FαK and a complex scalar field ρ. This result was previously proved for a Minkowski space-time using Fierz identities. As an application we derive several different non-Riemannian spin connections found in the literature directly from an arbitrary linear connection acting on the tensor fields (FαK, ρ). We also derive spin connections for which Dirac's bispinor equation is form invariant. Previous work has not considered form invariance of the Dirac equation as a criterion for defining a general spin connection.  相似文献   

17.
18.
The variables of a vector meson field are determined within the framework of the Kibble theory as the functions of the metric tensor, affine connection and their derivatives and a system of differential equations is found for the metric tensor and affine connection which is equivalent to the equations of motion of gravitational and vector meson fields.  相似文献   

19.
Conclusion The principal difficulty that has obstructed the formulation of gauge gravitation for more than twenty years now is the fact that an Einstein gravitational field represents a metric or a tetradic field, while gauge fields are connections on fiber bundles.The popular approach to the resolution of this problem lies in attempts to represent tetrad fields as gauge fields of the translation subgroup within the framework of the gauge theory of the Poincaré group, but the existing set of variants of the latter theory indicate that it is a long way from completion.Our approach [2, 3] insists that in a gauge theory, apart from gauge fields, the situation of spontaneous breaking of symmetry can also admit Goldstone and Higgs fields, under which is subsumed the metric (tetrad) gravitational field by virtue of the fact that, as we have shown above, the equivalence principle is included in the gauge theory of gravitation.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 79–82, June, 1981.  相似文献   

20.
In this article, we postulate SO(3, 1) as a local symmetry of any relativistic theory. This is equivalent to assuming the existence of a gauge field associated with this noncompact group. This SO(3, 1) gauge field is the spinorial affinity which usually appears when we deal with weighting spinors, which, as is well known, cannot be coupled to the metric tensor field. Furthermore, according to the integral approach to gauge fields proposed by Yang, it is also recognized that in order to obtain models of gravity we have to introduce ordinary affinities as the gauge field associated with GL(4) (the local symmetry determined by the parallel transport). Thus if we assume both L(4) and SO(3, 1) as local independent symmetries we are led to analyze the dynamical gauge system constituted by the Einstein field interacting with the SO(3, 1) Weyl-Yang gauge field. We think this system is a possible model of strong gravity. Once we give the first-order action for this Einstein-Weyl-Yang system we study whether the SO(3, 1) gauge field could have a tetrad associated with it. It is also shown that both fields propagate along a unique characteristic cone. Algebraic and differential constraints are solved when the system evolves along a null coordinate. The unconstrained expression for the action of the system is found working in the Bondi gauge. That allows us to exhibit an explicit expression of the dynamical generator of the system. Its signature turns out to be nondefinite, due to the nondefinite contribution of the Weyl-Yang field, which has the typical spinorial behavior. A conjecture is made that such an unpleasant feature could be overcome in the quantized version of this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号