首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Injury potential may have a triggering biological role in wound healing. In this study, the effect of photostimulation to promote wound healing and its effect on injury potential was investigated using the Ga-As and He-Ne lasers. In this study, 30 healthy male Sprague-Dawley rats were randomly divided into a control and two laser groups, He-Ne and Ga-As laser. A 2.5 cm craniocaudal full-thickness skin incision was made on each animal's dorsal region. Differential skin surface potential was measured before and immediately after the injury and also up to the 21st day, every other day. Wound surface area was also measured. Immediately after injury, wound potential significantly increased in all three groups. Maximum positive peak of injury potential was greater in Ga-As group compared to He-Ne laser and control groups (P<0.05) and lasting period of maximum positive potential in two laser groups was longer than that in the control group. There were no significant differences between the mean potential of before wounding and after the 15th, 17th, and 19th day in Ga-As, He-Ne, and control group, respectively (P>0.05). On the other hand, Ga-As and He-Ne laser facilitated the normal distribution of skin potential after wounding. These findings demonstrate that Ga-As laser may be more effective on wound closure and on returning the injury potential to normal level than the He-Ne laser.  相似文献   

2.
The present study investigates whether low-level helium-neon laser therapy can increase histological parameters of immobilized articular cartilage in rabbits or not. Twenty five rabbits were divided into three groups: the experiment group, which received low-level helium-neon laser therapy with 13J/cm(2) three times a week after immobilization of their right knees; the control group which did not receive laser therapy after immobilization of their knees; and the normal group which received neither immobilization nor laser therapy. Histological and electron microscopic examinations were performed at 4 and 7 weeks after immobilization. Depth of the chondrocyte filopodia in four-week immobilized experiment group, and depth of articular cartilage in seven-week immobilized experiment group were significantly higher than those of relevant control groups (exact Fisher test, p=0.001; student's t-test, p=0.031, respectively). The surfaces of articular cartilages of the experiment group were relatively smooth, while those of the control group were unsmooth. It is therefore concluded that low-level helium-neon laser therapy had significantly increased the depth of the chondrocyte filopodia in four-week immobilized femoral articular cartilage and the depth of articular cartilage in seven-week immobilized knee in comparison with control immobilized articular cartilage.  相似文献   

3.
It is shown that the initial biomechanical stability of the applied COC/PE blend in the treated tissue locality, the initial integrity of biomaterials substituting the subchondral bone by polymer implant, the initial bearing capacity and the vertical position of these biomaterials have a mayor influence on the regeneration of new articular cartilage and subchondral bone. These aspects are essential for a prosperous treatment of osteochondral defects. Results reveal that the initial biomechanical stiffness of materials (substituting the subchondral bone) has a fundamental influence on both the quality and the quantity of new articular cartilage and subchondral bone. Research is also aimed at the application of suitable biologically tolerated polymer material, its surface modifications, verifications of the vertical position of implants in relation to the articular cartilage surface and ensuring the initial biomechanical stability of the polymer implant.  相似文献   

4.
It has been suggested that low-level laser therapy (LLLT) can modulate inflammatory processes. The aim of this experiment was to investigate what effects red laser irradiation with two different wavelengths (660 nm and 684 nm) on carrageenan-induced rat paw edema and histology. Thirty two male Wistar rats were randomly divided into four groups. One group received a sterile saline injection, while inflammation was induced by a sub-plantar injection of carrageenan (1 mg/paw) in the three other groups. After 1 h, LLLT was administered to the paw in two of the carrageenan-injected groups. Continuous wave 660 nm and 684 nm red lasers respectively with mean optical outputs of 30 mW and doses of 7.5 J/cm(2) were used. The 660 nm and 684 nm laser groups developed significantly (p<0.01) less edema (0.58 ml [SE+/-0.17] ml and 0.76 ml [SE+/-0.10] respectively) than the control group (1.67 ml [SE+/-0.19]) at 4h after injections. Similarly, both laser groups showed a significantly lower number of inflammatory cells in the muscular and conjunctive sub-plantar tissues than the control group. We conclude that both 660 nm and 684 nm red wavelengths of LLLT are effective in reducing edema formation and inflammatory cell migration when a dose of 7.5 J/cm(2) is used.  相似文献   

5.
6.
The aim of this study was to examine the proliferation of peripheral blood mononuclear cells due to the low energy 632.8-nm He-Ne laser application. The results of previous studies supported the hypothesis that low level laser therapy (LLLT) might have an increasing effect on the proliferation of lymphocytes and production of cytokines. The effect of laser irradiation was investigated by comparing the proliferation of peripheral blood mononuclear cells (PBMC) with a mitogenic stimulator, PHA (phytohemaglutinin) and laser irradiation. PBMCs of control samples, only laser irradiated samples, PHA included samples and both PHA included and laser irradiated samples were quantified and compared. Results of [3H] Thymidine test, 20 s laser irradiated and 40 s laser irradiated samples' proliferation were found statistically higher than control samples. There was no significant difference between control and 60 s laser irradiated samples. PHA also showed its ability to proliferate cells. PHA included samples and both PHA included and laser irradiated samples' proliferation was higher than both control and only laser irradiated samples. Our results showed that He-Ne laser application enhanced the proliferation significantly. Moreover, laser dose was noted as a significant parameter. On the other hand, LLLT by itself was found less effective than PHA.  相似文献   

7.
BACKGROUND and OBJECTIVE: Ionizing radiation therapy by way of various beams such as electron, photon and neutron is an established method in tumor treatment. The side effects caused by this treatment such as ulcer, painful mastitis and delay of wound healing are well known, too. Biomodulation by low level laser therapy (LLLT) has become popular as a therapeutic modality for the acceleration of wound healing and the treatment of inflammation. Evidence for this kind of application, however, is not fully understood yet. This study intends to demonstrate the response of biomodulative laser treatment on the side effects caused by ionizing radiation by means of magnetic resonance imaging (MRI). STUDY DESIGN/PATIENTS and METHODS: Six female patients suffering from painful mastitis after breast ionizing irradiation and one man suffering from radiogenic ulcer were treated with lambda=780 nm diode laser irradiation at a fluence rate of 5 J/cm2. LLLT was performed for a period of 4-6 weeks (mean sessions: 25 per patient, range 19-35). The tissue response was determined by means of MRI after laser treatment in comparison to MRI prior to the beginning of the LLLT. RESULTS: All patients showed complete clinical remission. The time-dependent contrast enhancement curve obtained by the evaluation of MR images demonstrated a significant decrease of enhancement features typical for inflammation in the affected area. CONCLUSION: Biomodulation by LLLT seems to be a promising treatment modality for side effects induced by ionizing radiation.  相似文献   

8.
In this study, we aimed to analyze the effects of low‐level laser therapy (LLLT; 660 nm) on levels of protein expression of inflammatory mediators after cutting Achilles tendon of rats. Thirty Wistar male rats underwent partial incisions of the left Achilles tendon, and were divided into three groups of 10 animals according to the time of euthanasia after injury: 6, 24 and 72 h. Each group was then divided into control group and LLLT group (treated with 100 mW, 3.57 W cm?2, 0.028 cm2, 214 J cm?2, 6 J, 60 s, single point). In LLLT group, animals were treated once time per day until the time of euthanasia established for each group. The group treated with LLLT showed a significant reduction of IL‐1β compared with control groups at three time points (6 h: P = 0.0401; 24 h: P = 0.0015; 72 h: P = 0.0463). The analysis of IL‐6 showed significant reduction only in the LLLT group at 72 h compared with control group (P = 0.0179), whereas IL‐10 showed a significant increase in the treated group compared with control group at three experimental times (6 h: P = 0.0007; 24 h: P = 0.0256; 72 h: P < 0.0001). We conclude that LLLT is an important modulator of inflammatory cytokines release after injury in Achilles tendon.  相似文献   

9.
This study was designed to demonstrate that bioluminescence imaging (BLI) can be used as a new tool to evaluate the effects of low-level laser therapy (LLLT) during in vivo inflammatory process. Here, the efficacy of LLLT in modulating inducible nitric oxide synthase (iNOS) expression using different therapeutic wavelengths was determined using transgenic animals with the luciferase gene under control of the iNOS gene expression. Thirty transgenic mice, FVB/N-Tg(iNOS-luc)Xen, were allocated randomly to one of four experimental groups treated with different wavelengths (lambda = 635, 785, 808 and 905 nm) or a control group (nontreated). Inflammation was induced by intra-articular injection of zymosan A in both knee joints. Laser treatment (25 mW cm(-2), 200 s, 5 J cm(-2)) was applied to the knees 15 min after inflammation induction. Measurements of iNOS expression were performed at various times (0, 3, 5, 7, 9 and 24 h) by measuring the bioluminescence signal using a highly sensitive charge-coupled device (CCD) camera. The results showed a significant increase in BLI signal after irradiation with 635 nm laser when compared to the nonirradiated animals and the other LLLT-treated groups, indicating wavelength dependence of LLLT effects on iNOS expression during the inflammatory process, and thus demonstrating an action spectrum of iNOS gene expression following LLLT in vivo that can be detected by BLI. Histological analysis was also performed and demonstrated the presence of fewer inflammatory cells in the synovial joints of mice irradiated with 635 nm compared with nonirradiated knee joints.  相似文献   

10.
Diabetic neuropathy (DN) is the highly occurred complication of diabetes mellitus; it has been defined as an event of peripheral nerve dysfunction characterized by pain, allodynia, hyperalgesia, and paraesthesia. The current study was conducted to evaluate the efficacy of low-level laser therapy (LLLT) in the management of neuropathy in diabetic rats. The used animals were divided into the following groups: negative control, streptozotocin-induced diabetic rats, and diabetic rats with peripheral neuropathy (DNP) and DNP treated with gabapentin or with LLLT. Behavioral tests were carried out through hotplate test for the determination of pain sensations and the Morris water maze test for spatial reference memory evaluation. Blood samples were collected at the end of treatment for biochemical determinations. In the current study, the latency of hind-paw lick decreased significantly when DNP are treated with gabapentin or LLLT. The Morris water maze test showed that LLLT treatment improved memory that deteriorated in DNP more than gabapentin do. The results of the biochemical study revealed that LLLT could not affect the level of beta-endorphin that decreased in DNP but significantly decreased S100B that rose in DNP. PGE2 and cytokines IL-1β, IL-10, and TNF-α showed significant increase in DNP compared with control group. The gabapentin administration or LLLT application significantly reversed the levels of the mentioned markers towards the normal values of the controls. Levels of serum MDA and nitric oxide increased significantly in the DNP but rGSH showed significant decrease. These markers were improved significantly when the DNP were treated with gabapentin or LLLT. The treatment with gabapentin or LLLT significantly decreased the raised level in total cholesterol in DNP but could not decrease the elevated level of triglycerides, while LDL cholesterol decreased significantly in DNP treated with gabapentin but not affected by LLLT. Values of serum alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), urea, and creatinine increased significantly in the DPN and diabetic rats without peripheral neuropathy (PN) compared with control group. The treatment of DNP with gabapentin induced significant increases in ALAT and ASAT activities but LLLT treatment induced significant decreases in ALAT and ASAT activities as compared with DNP group. Neither gabapentin nor LLLT could improve the elevated levels of serum urea and creatinine in the DNP. It could be concluded that LLLT is more safe and effective than gabapentin in the management of neuropathy in diabetic rats.  相似文献   

11.
We investigated the synergistic wound‐healing effects of D ‐glucosamine (GlcN) and collagen peptide ( : 10 000 Daltons soluble collagen (S‐Co)) on injured cartilage. A injured cartilage model in rabbit was surgically created. Under general anesthesia, three holes at articular cartilage of the medial trochlear (one hole) and trochlear sulcus (two holes) of a distal femur were created using a high‐speed orthopedic drill. After surgery, rabbits were orally administered with collagen peptide (S‐Co group), GlcN (G group), or both (CoG group) for 2 or 3 weeks. In addition, glycine (Gly group) was administered as a control for the S‐Co group in three rabbits. Control rabbits were provided with water ad lib. After 2 weeks, the holes were filled by fibroblasts and chondroblasts in the treatment group, whereas in the control group, the holes were not filled completely unlike for the treatment group. Even three weeks later, only a small change was seen in the control group. In the group receiving collagen and GlcN, the holes were completely filled by proliferating chondroblasts, remodeling of bony trabeculae was also observed. Image analysis of Safranin O‐ and Alcian blue‐stained specimens showed increased production of proteoglycans and glycosaminoglycans, respectively, not only in the injured site, but also in the normal cartilage in the treated groups. The most enhanced healing of injury and increase in Safranin O and Alcian blue positive materials was observed in the CoG group. As a result, simultaneous administration of collagen and GlcN gave a fairly enhanced healing on restoration of cartilage injuries.

Artificial cartilage injury at the stifle joint of a rabbit. a: proximal hole in trochlear sulcus; b: distal hole in trochlear sulcus; c: medial hole in medial trochlear ridge.  相似文献   


12.
One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma‐radiation and endocrine disrupters. Low‐level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium–Neon laser to repair the damaged tissues of thyroid gland after gamma‐irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser‐irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm2, 2.1 mW cm?2, 120 s, 1.4 J, 0.252 J cm?2) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.  相似文献   

13.
Muscle strains are among the most prevalent causes for athletes' absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.  相似文献   

14.
Mechanically deformed morphologic cartilage grafts undergo temperature-dependent stress relaxation during sustained laser irradiation resulting in stable shape changes. In this study, porcine nasal septal cartilage specimens were evaluated for viability by measuring the incorporation of Na2(35)SO4 into proteoglycan (PTG) macromolecules in whole tissue culture following laser-mediated reshaping. Synthesis rates of PTG were determined by scintillation counting lyophilized specimens and normalizing these values by total protein content. Positive controls were established by inducing chondrocyte apoptosis using prolonged exposure to nitric oxide (NO). In chondrocytes, apoptosis induced using NO resulted in significantly lower PTG synthesis rates compared to untreated native specimens. Cartilage specimens were irradiated with light emitted from a Nd:YAG laser (25 W/cm2, lambda = 1.32 microns) while recording simultaneously radiometric surface temperature, internal stress and back-scattered light intensity from a probe laser. Each specimen received one, two or three sequential laser exposures. The duration of each exposure was determined from real-time measurements of characteristic changes in back-scattered light intensity that correlate with accelerated stress relaxation. A 5 min time interval between each laser exposures allowed the cartilage specimen to return to thermal equilibrium. Average PTG synthesis rates decreased with successive laser exposures, though these were always higher than baseline rates established for NO-treated tissues, suggesting that laser-mediated cartilage reshaping acutely does not eliminate the entire population of viable chondrocytes. The reduction in PTG synthesis is correlated with the time-temperature-dependent heating profile created during laser irradiation, supporting our hypothesis that careful monitoring of laser dosimetry is required to ensure chondrocyte viability.  相似文献   

15.
The low level laser therapy (LLLT) has been used as an option to accelerate the regeneration of bone tissue. In this study, both femurs of male Wistar rats (30 animals) were injured with a drill and the effect of LLLT using a laser diode (100 mW at 660 nm) in the bone matrix on the left paw measured. LLLT effect on the healing bone tissue matrix was evaluated by a combination of immunohistochemical histomorphometry, confocal immunofluorescence microscopy and isolation and characterization of glycosaminoglycans. Histomorphometric analysis showed that LLLT increased bone matrix and showing more organized. Alcian Blue and PAS staining seems to suggest differential glycosaminoglycans and glycoproteins. The data showed increased expression of chondroitin sulfate and hyaluronic acid, after reduction as the LLLT and mature bone, resembling the expression of osteonectin and biglycan. The difference in expression of siblings (DMP‐1, OPN and BSP) is in accordance with the repair accelerated bone formation after the application of LLLT as compared with control. The expression of osteonectin and osteocalcin supports their role in bone mineralization protein, indicating that LLLT accelerates this process. The overall data show that LLLT bone changes dynamic array, shortening the time period involved in the bone repair.  相似文献   

16.
Several examples of synthetically unique reaction control effected by pulsed infrared laser multiphoton irradiation are reviewed. The uniqueness derives from the ability of the pulsed laser to rapidly vibrationally heat molecules coupled with an extremely short reaction time of approximately 10 μs for the processes discussed herein. Three systems are discussed: a bifunctional reactant with competing reaction channels, a reactant with consecutive reaction channels, and the free radical chlorination of cyclopropane.  相似文献   

17.
Damage to articular cartilage can over time cause degeneration to the tissue surrounding the injury. To address this problem, scaffolds that prevent degeneration and promote neotissue growth are needed. A new hybrid scaffold that combines a stereolithography‐based 3D printed support structure with an injectable and photopolymerizable hydrogel for delivering cells to treat focal chondral defects is introduced. In this proof of concept study, the ability to a) infill the support structure with an injectable hydrogel precursor solution, b) incorporate cartilage cells during infilling using a degradable hydrogel that promotes neotissue deposition, and c) minimize damage to the surrounding cartilage when the hybrid scaffold is placed in situ in a focal chondral defect in an osteochondral plug that is cultured under mechanical loading is demonstrated. With the ability to independently control the properties of the structure and the injectable hydrogel, this hybrid scaffold approach holds promise for treating chondral defects.  相似文献   

18.
There are evidences that low-intensity red laser radiation is capable to accelerate wound healing. Nowadays, this therapy has been gradually introduced in clinical practice although mechanisms underlying laser effects are poorly understood. To better understand the photobiological effects of laser radiation, this study investigated by electron microscopy, immunohistochemistry and autoradiography the morphological and functional features of irradiated and none irradiated injured mice skin. Full-thickness skin lesions were created on the back of mice and irradiated on days 1, 5, 8, 12, and 15 post-wounding with a He-Ne laser (lambda=632.8nm), dose 1J/cm(2), exposure time 3min. Non-irradiated lesions were used as a control. The mice were inoculated with (3)H-proline and sacrificed one hour after on the 8th, 15th and 22nd days to histological and radioautographical analysis. The irradiated-lesions showed a faster reepithelization compared with control lesions. The irradiated dermis contained a higher number of activated fibroblasts compared to control group and, most of them showed several cytoplasmic collagen-containing phagosomes. In irradiated-lesions, smooth muscle alpha-actin positive cells predominated, which correspond to a higher number of myofibroblasts observed in the electron microscope. Moreover, laser radiation reduced the local inflammation and appears to influence the organization of collagen fibrils in the repairing areas. Quantitative autoradiography showed that the incorporation of (3)H-proline was significantly higher in irradiated-dermis on the 15th day post-wounding (p<0.05). These results suggest that laser radiation may accelerate cutaneous wound healing in a murine model.  相似文献   

19.
The properties of graphene oxide foils were modified by excimer laser irradiation at different fluences and times. The irradiations were performed in air and in vacuum using a pulsed UV laser operating at 248-nm wavelength and 23-ns pulse duration. Measurements of ablation yield, microscope surface morphology and Raman spectroscopy were performed. The residual surface shows a significant oxygen reduction due to the removing of functional oxygen groups, a thickness reduction due to the removal of graphene layers depending on the used laser shots and a presence of defects in the graphene sheets as evident by the Raman spectroscopy investigation.  相似文献   

20.
We investigated the laser ablation of an elastomer composite with picosecond‐ (ps‐) and femtosecond‐ (fs‐) pulsed UV lasers (ps‐laser: λ = 263 nm, τ = 8 ps; fs‐laser: λ = 248 nm, τ = 500 fs). Upon laser irradiation, a unique microstructure on the surface of the elastomer composite (acrylate polymer) containing carbon black (particle size: 18–30 nm) was observed. The laser‐ablated surfaces were analyzed by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The formation mechanism is discussed in terms of thermal effects induced by the different pulse durations of the lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号