首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以Mo~3S~4(dtp)~4.H~2O和M'(CO)~6(M'=Mo,W)为起始物在羧酸介质下通过[3+1]模式合成,分别得到一个同核和一个异核四核簇[Mo~4S~4(μ-C~2H~5CO~2)~2(dtpH)(dtp)~3]4和[Mo~3WS~4(μ-CH~3CO~2)~2(dtpH)(dtp)~3]5[dtp=(EtO)~2PS~2^-;dtpH=(EtO)~2P(S)(SH)]。两个簇合物以单晶X射线分析和IR谱学进行结构表征,它们均具有[M~4S~4]^5^+类立方烷簇芯。  相似文献   

2.
Fe~3(CO)~1~2与4个S,N取代的杂环硫代酰胺配前体[SCSC(SR)NNPh(SL~n),其中SL~1:R=Me;SL~2:R=Et;SL~3:R=n-Pr;SL~4:R=i-Bu]反应,合成得到含硫氮杂环卡宾配体的通式为[Fe~3(CO)~8(μ~3-S)~2L]的4个新羰合铁簇合物(1~4)。其配体S原子和杂环卡宾L皆来自配前体SL的劈开。对它们进行了元素分析,IR,^1HNMR和MS表征,并用X射线衍射测定了2的晶体分子结构,表明含硫氮杂环分子片CSC(SR)NNPh(L)的卡宾碳具有sp^2成键特征,其C~卡~宾键长为0.1960nm。2的分子几何构型维持母体物[Fe~3(CO)~9(μ~3-S)~2]的形状,其中卡宾基取代四方锥分子骨架Fe~3S~2基底平面Fe(1)S(1)Fe(3)S(2)的Fe(3)原子上径向位置的一个端羰基CO。  相似文献   

3.
蔡淑惠  陈忠  孙福侠  高宪成  卢绍芳 《化学学报》1998,56(11):1117-1122
二核钼簇合物Mo~2S~4(i-mnt)~2(Et~4N)~2和(Et~4N)~3K[Mo~2S~4(i-mnt)~2]~2[i-mnt=S~2C(CN)^2^-]的阴离子在晶体中构成独特的链状结构,本文采用扩展的Huckel近似下的紧束缚能带方法,计算了它们的能带结构。结果表明,相邻簇阴离子间存在弱的相互作用,它是形成链状结构的基础。链状结构与晶体的半导体性质相关联。态密度和晶体轨道重叠布居反映了晶体中电荷分布状况及化学成键特点,与晶体结构分析、NMR谱学表征结果相符合。  相似文献   

4.
由(NH~4)~2Mo~2S~12H~2O和(NH~4)(S~2CNC~4H~8)在PPh~3参与反应下,获得Mo~2S~4(S~2CNC~4H~8)~2化合物,对此二核钼簇合物进行了红外、电子光谱、电化学及单晶X射线结构表征,并尝试与多种金属化合物进行[2+1]反应,从反应产物的晶体结构分析发现了包括金属夺取端基S^2-形成Mo~2O~2S~2(S~2CNC~4H~8)~2化合物,Cu^+被氧化并夺取配体(S~2CNC~4H~8)^-形成Cu(S~2CNC~4H~8)~2以及Mo(V)还原为Mo(IV),S^2-氧化为(S~2)^2-而形成Mo~3(μ~3-S)(μ-S~2)~3[S~2CNC~4H~8]~3.  相似文献   

5.
金国新  刘宇  于晓燕 《有机化学》2000,20(3):352-356
Cp^*Cr(NO)(CO)~2与Fe(C~5H~4S)~2S反应,形成氧化-还原产物Cp^*Cr(NO)(SC~5H~4)~2Fe(1)。双杂核二茂铁化合物Cp^*M(NO)(EC~5H~4)~2Fe[M=Mo,E=S(2a),Se(2b);M=W,E=S(4a),Se(4b)]、CpMo(NO)(SC~5H~4)~2Fe(3)、Cp~2Mo(SeC~5H~4)~2Fe(6)和Cp~2W(SC~5H~4)~2Fe(7)可通过Fe(C~5H~4ELi)~2.2THF(E=S,Se)与Cp^*M(NO)I~2(M=Mo,W)、[CpMo(MO)I~2]~2或Cp~2MCl~2(M=Mo,W)反应制得。三核杂原子二茂铁化合物[Cp^*Cr(NO)~2]~2(EC~5H~4)~2Fe[E=S(8a),Se(8b)],由Fe(C~5H~4ELi)~2.2THF(E=S,Se)与二倍摩尔量的Cp^*Cr(NO)~2I反应制备。通过AgBF~4氧化2a得到二茂铁离子型化合物[Cp^*Mo(NO)(SC~5H~4)~2Fe]^+BF~4^-(5)。采用元素分析、红外光谱、^1H和^1^3CNMR谱以及EI-MS表征了所合成的新型化合物。  相似文献   

6.
碳钢钝化膜在碳酸盐溶液中的阴极还原机理   总被引:3,自引:0,他引:3  
林志成  黎明 《化学学报》1989,47(12):1146-1151
本文采用动电位和恒电流技术研究了pH8.31-11.37的酸盐缓冲溶液中, 低碳钢钝化膜的阴极还原机理。认为钝化膜的还原与溶液pH值密切相关, 当8.31≤pH≤9.80时, Fe~2O~3还原为Fe用FeOH^+;当9.80相似文献   

7.
由[Mo~3(μ~3-O)(μ-S)~3(dtp)~4(H~2O)和PbI~3^-在咪唑存在下反应获得异四核混合簇[Mo~3(PbI~3)S~4(dtp)~3(C~3H~4N~2)~3][(CH~3)~2CO]~2(2)[dtp=S~2P(OC~2H~5)~2^-]。簇合物属斜方晶系,空间群P~b~c~a(No.61),晶胞参数为a=2.3590(3),b=1.9161(5),c=2.6458(9)nm,V=11.959(6)nm^3,Z=8。结构最终偏离因子R=0.067。此四核簇分子具有[Mo~3PbS~4]类立方烷簇芯,簇分子整体对称性接近C~3~v。在同一不对称单元中,簇分子的咪唑环以(NH)和溶剂丙酮分子的氧原子形成O---H---N氢键。  相似文献   

8.
双齿含硫配位体,二乙胺基二硫代甲酸钠盐与氯化亚铁及四硫代钼酸铵在二甲基甲酰胺溶液中,经一步自兜反应得到(Et~4N)[MoFe~3S~4(Et~2NCSS)~5]CH~3CN(1).X射线单晶结构测定表明1具有类立方烷骨架,核心价态为[MoFe~3S~4]^4^+,通过对1的阴离子结构分析,指出配位基的双齿螯合作用对化合物的稳定性及结构的影响。化学键理论计算也解释了阴离子中的主要键长特点。  相似文献   

9.
采用DFT/B3LYP方法研究了化合物Mo(CO)~n^+(n=1~6)的基态可能构型,对于各n值,基态可能构型(电子态)依次为:直线型(^6∑^+),直线型(^6∑~g^+),C~2~υ(^2A~2)或D~3~h(^6A~1),D~4~H(^4A~1~g),C~2~ν(^2B~2)或C~4~ν'(^2B~1),D~3~d(^2A~1~g)。计算结果表明,对于n≥3时,碎片离子的构型与体系自旋多重度关系敏感。进一步计算了Mo-CO键的逐级解离能,计算值与实验结果能较好吻合,并从Mo原子4d和5s轨道杂化角度来解释该键解离能随n值的非单调变化。  相似文献   

10.
本文通过对巯基铁与MoS~4^2-反应的研究,对双立方烷型铁-钼-硫原子簇化合物的形成途径及中间物作了讨论.同时报道了[Fe~4(SPh)~10](Et~4N)~2K与[MoS~4][Et~4N]~2反应的产物(Et~4N)~4-[Mo~2Fe~7S~8(SPh)~12(2)的合成,晶体结构,红外光谱和磁化率.晶体2属三斜晶系,Mr=2670.3;空间群PI;a=12.775(4),b=13.076(3),c=20.576(4)A;α=80.00(2),β=81.39(2),γ=61,51(2);V=2966.3(14)A~3;Z=1;Dc=1.495g.cm^-3;F(000)=1378;偏离因子R=0.077.特别指出了分子中Mo-Mo'的距离[7.188(6)A]是当今同类化合物中最长的,它对研究固氮酶活性中心模型物的合成和结构规律,有重要意义.  相似文献   

11.
Magnetization measurements and variable temperature optical spectroscopy have been used to investigate, within the 4-300 K temperature range, the electronic structure of the reduced high-potential iron protein (HiPIP) from Chromatium vinosum and the model compounds (Cat)(2)[Fe(4)S(4)(SR)(4)], where RS(-) = 2,4,6-triisopropylphenylthiolate (1), 2,6-diphenylphenylthiolate (2), diphenylmethylthiolate (3), 2,4,6-triisopropylbenzylthiolate (4, 4'), 2,4,6-triphenylbenzylthiolate (5, 5'), 2,4,6-tri-tert-butylbenzylthiolate (6), and Cat(+) = (+)NEt(4) (1, 2, 3, 4', 5', 6), (+)PPh(4) (4, 5). The newly synthesized 2(2)(-), 3(2)(-), 5(2)(-), and 6(2)(-) complexes are, as 1(2)(-) and 4(2)(-), excellent models of the reduced HiPIPs: they exhibit the [Fe(4)S(4)](3+/2+) redox couple, because of the presence of bulky ligands which stabilize the [Fe(4)S(4)](3+) oxidized core. Moreover, the presence of SCH(2) groups in 4(2)(-), 5(2)(-), and 6(2)(-), as in the [Fe(4)S(4)] protein cores, makes them good biomimetic models of the HiPIPs. The X-ray structure of 2 is reported: it crystallizes in the orthorhombic space group Pcca with no imposed symmetry and a D(2)(d)()-distorted geometry of the [Fe(4)S(4)](2+) core. Fit of the magnetization data of the reduced HiPIP and of the 1, 2, 3, 4, 5, and 6 compounds within the exchange and double exchange theoretical framework leads to exchange coupling parameters J = 261-397 cm(-)(1). A firm determination of the double exchange parameters B or, equivalently, the transfer integrals beta = 5B could not be achieved that way. The obtained |B| values remain however high, attesting thus to the strength of the spin-dependent electronic delocalization which is responsible for lowest lying electronic states being characterized by delocalized mixed-valence pairs of maximum spin (9)/(2). Electronic properties of these systems are then accounted for by the population of a diamagnetic ground level and excited paramagnetic triplet and quintet levels, which are respectively J and 3J above the ground level. Optical studies of 1, 2, 4', 5', and 6 but also of (NEt(4))(2)[Fe(4)S(4)(SCH(2)C(6)H(5))(4)] and the isomorph (NEt(4))(2)[Fe(4)S(4)(S-t-Bu)(4)] and (NEt(4))(2)[Fe(4)Se(4)(S-t-Bu)(4)] compounds reveal two absorption bands in the near infrared region, at 705-760 nm and 1270-1430 nm, which appear to be characteristic of valence-delocalized and ferromagnetically coupled [Fe(2)X(2)](+) (X = S, Se) units. The |B| and |beta| values can be directly determined from the location at 10|B| of the low-energy band, and are respectively of 699-787 and 3497-3937 cm(-)(1). Both absorption bands are also present in the 77 K spectrum of the reduced HiPIP, at 700 and 1040 nm (Cerdonio, M.; Wang, R.-H.; Rawlings, J.; Gray, H. B. J. Am. Chem. Soc. 1974, 96, 6534-6535). The blue shift of the low-energy band is attributed to the inequivalent environments of the Fe sites in the protein, rather than to an increase of |beta| when going from the models to the HiPIP. The small differences observed in known geometries of [Fe(4)S(4)](2+) clusters, especially in the Fe-Fe distances, cannot probably lead to drastic changes in the direct Fe-Fe interactions (parameter beta) responsible for the delocalization phenomenon. These differences are however magnetostructurally significant as shown by the 261-397 cm(-)(1) range spanned by J. The cluster's geometry, hence the efficiency of the Femicro(3)-S-Fe superexchange pathways, is proposed to be controlled by the more or less tight fit of the cluster within the cavity provided by its environment.  相似文献   

12.
The syntheses, crystal structures, magnetochemical characterization, and theoretical calculations are reported for three new iron clusters [Fe 6O 2(NO3) 4(hmp) 8(H 2O) 2](NO3)2 (1), [Fe4(N3)6(hmp)6] (2), and [Fe8O3(OMe)(pdm)4(pdmH) 4(MeOH)2](ClO4)5 (3) (hmpH=2-(hydroxymethyl)pyridine; pdmH2=2,6-pyridinedimethanol). The reaction of hmpH with iron(III) sources such as Fe(NO3) 3.9H2O in the presence of NEt 3 gave 1, whereas 2 was obtained from a similar reaction by adding an excess of NaN3. Complex 3 was obtained in good yield from the reaction of pdmH 2 with Fe(ClO4)3.6H2O in MeOH in the presence of an organic base. The complexes all possess extremely rare or novel core topologies. The core of 1 comprises two oxide-centered [Fe3(mu3-O)](7+) triangular units linked together at two of their apexes by two sets of alkoxide arms of hmp(-) ligands. Complex 2 contains a zigzag array of four Fe (III) atoms within an [Fe4(mu-OR) 6](6+) core, with the azide groups all bound terminally. Finally, complex 3 contains a central [Fe 4(mu4-O)](10+) tetrahedron linked to two oxide-centered [Fe3(mu3-O)](7+) triangular units. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) established that 1 possesses an S=3 ground-state spin, with g=2.08, and D=-0.44 cm(-1). The magnetic susceptibility data for 2 up to 300 K were fit by matrix diagonalization and gave J1=-9.2 cm(-1), J2=-12.5 cm(-1), and g=2.079, where J 1 and J 2 are the outer and middle nearest-neighbor exchange interactions, respectively. Thus, the interactions between the Fe(III) centers are all antiferromagnetic, giving an S=0 ground state for 2. Similarly, complex 3 was found to have an S=0 ground state. Theoretically computed values of the exchange constants in 2 were obtained with DFT calculations and the ZILSH method and were in good agreement with the values obtained from the experimental data. Exchange constants obtained with ZILSH for 3 successfully rationalized the experimental S = 0 ground state. The combined work demonstrates the ligating flexibility of pyridyl-alcohol chelates and their usefulness in the synthesis of new polynuclear Fex clusters without requiring the copresence of carboxylate ligands.  相似文献   

13.
Ligand K-edge XAS of an [Fe3S4]0 model complex is reported. The pre-edge can be resolved into contributions from the mu(2)S(sulfide), mu(3)S(sulfide), and S(thiolate) ligands. The average ligand-metal bond covalencies obtained from these pre-edges are further distributed between Fe(3+) and Fe(2.5+) components using DFT calculations. The bridging ligand covalency in the [Fe2S2]+ subsite of the [Fe3S4]0 cluster is found to be significantly lower than its value in a reduced [Fe2S2] cluster (38% vs 61%, respectively). This lowered bridging ligand covalency reduces the superexchange coupling parameter J relative to its value in a reduced [Fe2S2]+ site (-146 cm(-1) vs -360 cm(-1), respectively). This decrease in J, along with estimates of the double exchange parameter B and vibronic coupling parameter lambda2/k(-), leads to an S = 2 delocalized ground state in the [Fe3S4]0 cluster. The S K-edge XAS of the protein ferredoxin II (Fd II) from the D. gigas active site shows a decrease in covalency compared to the model complex, in the same oxidation state, which correlates with the number of H-bonding interactions to specific sulfur ligands present in the active site. The changes in ligand-metal bond covalencies upon redox compared with DFT calculations indicate that the redox reaction involves a two-electron change (one-electron ionization plus a spin change of a second electron) with significant electronic relaxation. The presence of the redox inactive Fe(3+) center is found to decrease the barrier of the redox process in the [Fe3S4] cluster due to its strong antiferromagnetic coupling with the redox active Fe2S2 subsite.  相似文献   

14.
Protonation of the [Fe]-hydrogenase model complex (mu-pdt)[Fe(CO)(2)(PMe(3))](2) (pdt = SCH(2)CH(2)CH(2)S) produces a species with a high field (1)H NMR resonance, isolated as the stable [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+)[PF(6)](-) salt. Structural characterization found little difference in the 2Fe2S butterfly cores, with Fe.Fe distances of 2.555(2) and 2.578(1) A for the Fe-Fe bonded neutral species and the bridging hydride species, respectively (Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710). Both are similar to the average Fe.Fe distance found in structures of three Fe-only hydrogenase active site 2Fe2S clusters: 2.6 A. A series of similar complexes (mu-edt)-, (mu-o-xyldt)-, and (mu-SEt)(2)[Fe(CO)(2)(PMe(3))](2) (edt = SCH(2)CH(2)S; o-xyldt = SCH(2)C(6)H(4)CH(2)S), (mu-pdt)[Fe(CO)(2)(PMe(2)Ph)](2), and their protonated derivatives likewise show uniformity in the Fe-Fe bond lengths of the neutral complexes and Fe.Fe distances in the cationic bridging hydrides. The positions of the PMe(3) and PMe(2)Ph ligands are dictated by the orientation of the S-C bonds in the (mu-SRS) or (mu-SR)(2) bridges and the subsequent steric hindrance of R. The Fe(II)(mu-H)Fe(II) complexes were compared for their ability to facilitate H/D exchange reactions, as have been used as assays of H(2)ase activity. In a reaction that is promoted by light but inhibited by CO, the [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) complex shows H/D exchange activity with D(2), producing [(mu-D)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) in CH(2)Cl(2) and in acetone, but not in CH(3)CN. In the presence of light, H/D scrambling between D(2)O and H(2) is also promoted by the Fe(II)(mu-H)Fe(II) catalyst. The requirement of an open site suggests that the key step in the reactions involves D(2) or H(2) binding to Fe(II) followed by deprotonation by the internal hydride base, or by external water. As indicated by similar catalytic efficiencies of members of the series, the nature of the bridging thiolates has little influence on the reactions. Comparison to [Fe]H(2)ase enzyme active site redox levels suggests that at least one Fe(II) must be available for H(2) uptake while a reduced or an electron-rich Fe(I)Fe(I) metal-metal bonded redox level is required for proton uptake.  相似文献   

15.
16.
Pentanuclear, cyanide-bridged clusters [M(tmphen)2]3[M'(CN)6]2 (M/M' = Zn/Cr (1), Zn/Fe (2), Fe/Fe (3), Fe/Co (4), and Fe/Cr (5); tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) were prepared by combining [M'III(CN)6]3- anions with mononuclear complexes of MII ions with two capping tmphen ligands. The clusters consist of a trigonal bipyramidal (TBP) core with three MII ions in the equatorial positions and two M'III ions in the axial positions. Compounds 1-4 are isostructural and crystallize in the monoclinic space group P21/c. Complex 5 crystallizes in the enantiomorphic space group P3221. The magnetic properties of compounds 1 and 2 reflect the contributions of the individual [CrIII(CN)6]3- and [FeIII(CN)6]3- ions. The FeII ions in compounds 3 and 4 exhibit a gradual, temperature-induced spin transition between high spin (HS) and low spin (LS), as determined by the combination of M?ssbauer spectroscopy, magnetic measurements, and single-crystal X-ray studies. The investigation of compound 5 by these methods and by IR spectroscopy indicates that cyanide linkage isomerism occurs during cluster formation. The magnetic behavior of 5 is determined by weak ferromagnetic coupling between the axial CrIII centers mediated by the equatorial diamagnetic FeII ions. M?ssbauer spectra collected in the presence of a high applied field have allowed, for the first time, the direct experimental observation of uncompensated spin density at diamagnetic metal ions that bridge paramagnetic metal ions.  相似文献   

17.
Density functional theory calculations were carried out on the structurally characterized [(Cl(4)-cat)Mo(py)Fe(3)S(3) (CO)(4)(P(n)Pr(3))(3)], A, and (Cl(4)-cat)Mo(py)Fe(3)S(3)(CO)(6)(PEt(3))(2), B, and also on A(2)(-) and B(2+) clusters. The Fe-Fe distances in these molecules depend on the total number of valence electrons (60 e(-) in A and B(2)(+) and 62 e(-) in A(2)(-) and B) and undergo great structural changes upon addition or removal of electrons. The changes are consistent with known electron-counting rules in organometallic chemistry. The weak nature of the Fe-Fe bonding interactions in these clusters is apparent in the very similar energies of states with widely different Fe-Fe distances.  相似文献   

18.
Protein-bound iron-sulfur clusters and their synthetic analogues are characterized by tetrahedral metal sites, multiple oxidation levels, and exchange coupling. The recent attainment of several all-ferrous protein clusters and the presence of sulfide- and thiolate-bridged sites in the all-ferrous state of the nitrogenase P-cluster provides an imperative for determination of exchange coupling between tetrahedral Fe(II) sites with sulfur bridges. The cluster in the previously reported compound (Et(4)N)(2)[Fe(2)(SEt)(6)] is centrosymmetric with distorted tetrahedral coordination and a planar Fe(2)(mu-SEt)(2) bridge unit. The compound is diamagnetic at 4.2 K, indicating antiferromagnetic coupling. The lower limit J > 80 cm(-)(1) (H = JS(1).S(2)) is obtained by M?ssbauer spectroscopy. Analysis of magnetic susceptibility data affords J = 165 +/- 15 cm(-)(1). It is noteworthy that the J value of the diferrous pair obtained here is comparable to the J values reported for the mixed-valence state of plant-type Fe(2)S(2) ferredoxins. The near temperature independence of the quadrupole splitting (DeltaE(Q) = 3.25 mm/s at 4.2 K and 3.20 mm/s at 180 K) indicates that no excited orbital states are appreciably populated at temperatures less than 300 K. The paramagnetism arises solely from thermal population of the S = 1 state of the spin ladder. This work provides the only measure of antiferromagnetic coupling by Fe(II) pairs in a tetrahedral sulfur environment.  相似文献   

19.
The all-ferrous, carbene-capped Fe(4)S(4) cluster, synthesized by Deng and Holm (DH complex), has been studied with density functional theory (DFT). The geometry of the complex was optimized for several electronic configurations. The lowest energy was obtained for the broken-symmetry (BS) configuration derived from the ferromagnetic state by reversing the spin projection of one of the high spin (S(i) = 2) irons. The optimized geometry of the latter configuration contains one unique and three equivalent iron sites, which are both structurally and electronically clearly distinguishable. For example, a distinctive feature of the unique iron site is the diagonal Fe···S distance, which is 0.3 ? longer than for the equivalent irons. The calculated (57)Fe hyperfine parameters show the same 1:3 pattern as observed in the M?ssbauer spectra and are in good agreement with experiment. BS analysis of the exchange interactions in the optimized geometry for the 1:3, M(S) = 4, BS configuration confirms the prediction of an earlier study that the unique site is coupled to the three equivalent ones by strong antiferromagnetic exchange (J > 0 in J Σ(j<4)?(4)·?(j)) and that the latter are mutually coupled by ferromagnetic exchange (J' < 0 in J' Σ(i相似文献   

20.
The influence of the interstitial atom, X, discovered in a recent crystallographic study of the MoFe protein of nitrogenase, on the electric hyperfine interactions of (57)Fe has been investigated with density functional theory. A semiempirical theory for the isomer shift, delta, is formulated and applied to the cofactor. The values of delta for the relevant redox states of the cofactor are predicted to be higher in the presence of X than in its absence. The analysis strongly suggests a [Mo(4+)4Fe(2+)3Fe(3+)] oxidation state for the S = 3/2 state M(N). Among C(4-), N(3-), and O(2-), oxide is found to be the least likely candidate for X. The analysis suggests that X should be present in the cofactor states M(OX) and M(R) as well as in the alternative nitrogenases. The calculations of the electric field gradients (EFGs) indicate that the small values for DeltaE(Q) in M(N) result from an extensive cancellation between valence and ligand contributions. X emerges from the analysis of the hyperfine interactions as an ionically bonded species. Its major effect is on the asymmetry parameters for the EFGs at the six equatorial sites, Fe(Eq). A spin-coupling scheme is proposed for the state [Mo(4+)4Fe(2+)3Fe(3+)] that is consistent with the measured (57)Fe A-tensors and DeltaE(Q) values for M(N) and identifies the unique site exhibiting the small A value with the terminal Fe site, Fe(T). The optimized structure of a cofactor model has been calculated for several oxidation states. The study reveals a contraction in the average Fe-Fe distance upon increasing the number of electrons stored in the cluster, in accord with extended X-ray absorption fine structure studies. The reliability of the adopted methodology for predicting redox-structural correlations is tested for cuboidal [4Fe-4S] clusters. The calculations reveal a systematic increase in the S...S sulfide distances, in quantitative agreement with the available data. These trends are rationalized by a simple electrostatic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号