首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-photon excitation of the THF-solvated electron. We find that as photoexcited THF-solvated electrons relax to their ground states either by continuous mixing from the excited state or via nonadiabatic transitions, approximately 30% of them relocalize into cavities that can be over 1 nm away from where they originated, in close agreement with the experiments. A detailed investigation shows that the ability of excited THF-solvated electrons to undergo photoinduced relocalization stems from the existence of preexisting cavity traps that are an intrinsic part of the structure of liquid THF. This explains why solvated electrons can undergo photoinduced relocalization in solvents like THF but not in solvents like water, which lack the preexisting traps necessary to stabilize the excited electron in other places in the fluid. We also find that even when they do not ultimately relocalize, photoexcited solvated electrons in THF temporarily visit other sites in the fluid, explaining why the photoexcitation of THF-solvated electrons is so efficient at promoting recombination with nearby scavengers. Overall, our study shows that the defining characteristic of a liquid that permits the photoassisted relocalization of solvated electrons is the existence of nascent cavities that are attractive to an excess electron; we propose that other such liquids can be found from classical computer simulations or neutron diffraction experiments.  相似文献   

2.
We report the study of laser-induced coherent lattice motions using femtosecond electron diffraction. The oscillations of Bragg peak positions associated with a damped lattice vibration along the surface normal were directly observed in real time and with sub-milli-angstrom spatial resolution. In addition, by using a pair of optical excitation pulses and varying their time delay and relative pulse intensities, we demonstrated the successful control of coherent lattice motions.  相似文献   

3.
A method for the measurement of rate constants for inelastic collisions between thermal electrons and excited atoms is presented. The measurements were performed in a mixture of saturated caesium and sodium vapor. Electrons were generated by ionization of caesium vapour by intense resonant dye laser pulses. Pulses of second dye laser, delayed with respect to the first one, excited the sodium atoms to the 3P level. Subsequently Na(3P) atoms were excited to higher levels by collisions with electrons. The fluorescence intensity from these levels served as a measure of the rate constant for these transitions. The method was used to investigate the electron impact induced 3P–4P excitation.  相似文献   

4.
The scavenging of a solvated electron represents the simplest possible electron-transfer (ET) reaction. In this work, we show how a sequence of femtosecond laser pulses can be used to manipulate an ET reaction that has only electronic degrees of freedom: the scavenging of a solvated electron by a single atom in solution. Solvated electrons in tetrahydrofuran are created via photodetachment using the charge-transfer-to-solvent (CTTS) transition of sodide (Na(-)). The CTTS process ejects electrons to well-defined distances, leading to three possible initial geometries for the back ET reaction between the solvated electrons and their geminate sodium atom partners (Na(0)). Electrons that are ejected within the same solvent cavity as the sodium atom (immediate contact pairs) undergo back ET in approximately 1 ps. Electrons ejected one solvent shell away from the Na(0) (solvent-separated contact pairs) take hundreds of picoseconds to undergo back ET. Electrons ejected more than one solvent shell from the sodium atom (free solvated electrons) do not recombine on subnanosecond time scales. We manipulate the back ET reaction for each of these geometries by applying a "re-excitation" pulse to promote the localized solvated electron ground state into a highly delocalized excited-state wave function in the fluid's conduction band. We find that re-excitation of electrons in immediate contact pairs suppresses the back ET reaction. The kinetics at different probe wavelengths and in different solvents suggest that the recombination is suppressed because the excited electrons can relocalize into different solvent cavities upon relaxation to the ground state. Roughly one-third of the re-excited electrons do not collapse back into their original solvent cavities, and of these, the majority relocalize into a cavity one solvent shell away. In contrast to the behavior of the immediate pair electrons, re-excitation of electrons in solvent-separated contact pairs leads to an early time enhancement of the back ET reaction, followed by a longer-time recombination suppression. The recombination enhancement results from the improved overlap between the electron and the Na(0) one solvent shell away due to the delocalization of the wave function upon re-excitation. Once the excited state decays, however, the enhanced back ET is shut off, and some of the re-excited electrons relocalize even farther from their geminate partners, leading to a long-time suppression of the recombination; the rates for recombination enhancement and relocalization are comparable. Enhanced recombination is still observed even when the re-excitation pulse is applied hundreds of picoseconds after the initial CTTS photodetachment, verifying that solvent-separated contact pairs are long-lived, metastable entities. Taken together, all these results, combined with the simplicity and convenient spectroscopy of the sodide CTTS system, allow for an unprecedented degree of control that is a significant step toward building a full molecular-level picture of condensed-phase ET reactions.  相似文献   

5.
Cherenkov emission in a “foil” of optical fibers is utilized for measuring the excitation in pulse radiolysis experiments, i.e., the charge of the pulses of high-energy electrons which penetrate the foil perpendicularly. Because of the inherent response of Cherenkov emission, this method can be applied for the detection of electron pulses with durations as short as a few picosecond or longer. High sensitivity and high time resolution as well as excellent precision are provided by this method.  相似文献   

6.
In this work, we investigate the primary photodynamics of aqueous formamide. The formamide was photolyzed using 200 nm femtosecond pulses, and formation of products and their relaxation was followed with approximately 300 fs time resolution using probe pulses covering the range from 193 to 700 nm. Following excitation, the majority of formamide molecules (approximately 80%) converts the electronic excitation energy to vibrational excitation, which effectively is dissipated to the solvent through vibrational relaxation in just a few picoseconds. The vibrational relaxation is observed as a distinct modulation of the electronic absorption spectrum of formamide. The relaxation process is modeled by a simple one-dimensional wavepacket calculation. A smaller fraction of the excited formamide molecules dissociates to the CHO and NH2 radical pairs, of which 50% escape recombination. In addition to the electronic excitation of formamide, we also observe a small contribution from one-photon ionization of formamide and two-photon ionization and dissociation of the water solvent.  相似文献   

7.
We demonstrate control of electronic population transfer in molecules with the help of appropriately shaped femtosecond laser pulses. To this end we investigate two photosensitizer dyes in solution being prepared in the triplet ground state. Excitation within the triplet system is followed by intersystem crossing and the corresponding singlet fluorescence is monitored as a measure of population transfer in the triplet system. We record control landscapes with respect to the fluorescence intensity on both dyes by a systematic variation of laser pulse shapes combining second order and third order dispersion. In the strong-field regime we find highly structured topologies with large areas of maximum or minimum population transfer being insensitive over a certain range of applied laser intensities thus demonstrating robustness. We then compare our experimental results with simulations on generic molecular potentials by solving the time-dependent Schr?dinger equation for excitation with shaped pulses. Control landscapes with respect to population transfer confirm the general trends from experiments. An analysis of regions with maximum or minimum population transfer indicates that coherent processes are responsible for the outcome of our excitation process. The physical mechanisms of joint motion of ground and excited state wave packets or population of a vibrational eigenstate in the excited state permit us to discuss the molecular dynamics in an atom-like picture.  相似文献   

8.
The anode region of a dc glow discharge at low pressure and current is studied by a new self-consistent, spatially one-dimensional hybrid method. The method consists of the coupled solution of the steady-state fluid equations of electrons, ions, and excited atoms and the Poisson equation using the electron transport properties as well as the excitation and ionization frequencies from a strict solution of the non-uniform kinetic equation of the electrons. Results such as the electric potential, the electron velocity distribution function, and the densities of the charge carriers and excited atoms are reported for the anode region of neon glow discharges. Physical properties of the plasma in the anode region known from experiments have been confirmed by the model such as the occurrence of the anode fall, a formation of plateau-like areas of the potential profile in front of the anode, the anode dark space, and the anode glow.  相似文献   

9.
We performed a series of successful experiments for the optimization of the population transfer from the ground to the first excited state in a complex solvated molecule (rhodamine 101 in methanol) using shaped excitation pulses at very low intensities (1 absorbed photon per 100-500 molecules per pulse). We found that the population transfer can be controlled and significantly enhanced by applying excitation laser pulses with crafted pulse shapes. The optimal shape was found in feedback-controlled experiments using a genetic search algorithm. The temporal profile of the optimal excitation pulse corresponds to a comb of subpulses regularly spaced by approximately 150 fs, whereas its spectrum consists of a series of well-resolved peaks spaced apart by approximately 6.5 nm corresponding to a frequency of 220 cm(-1). This frequency matches very well with the frequency modulation of the population kinetics (period of approximately 150 fs), observed by excitation with a short (approximately 20 fs) transform-limited laser pulse directly after excitation. In addition, an antioptimization experiment was performed under the same conditions. The difference in the population of the excited state for the optimal and antioptimal pulses reaches approximately 30% even at very weak excitation. The results of optimization are reproducible and have clear physical meaning.  相似文献   

10.
The recently developed Coupled Coherent States method for solution of the time-dependent Schrödinger equation is used to simulate the strong laser field double ionization of a helium atom in six spatial dimensions. The calculated double ionization yield, as a function of laser intensity, reproduces the “shoulder”, attributable to electron recollisions. The method, which employs a Coherent State representation guided by classical trajectories also provides physical insight into the ionization mechanism. The appearance of the ‘shoulder’, is seen by analysis of the guiding trajectories to arise predominantly from sequential excitation of one electron into a highly excited orbit, followed by an electron–electron collision leading to correlated escape of the two electrons. A second little known mechanism involves recollisions resulting in ionization of the secondary electron, leaving the first in a highly excited state, from which it is later ionized by the laser field.  相似文献   

11.
When a molecule is subjected to a short intense laser pulse, the ensuing dynamical processes depend qualitatively on the pulse parameters, including duration, frequency, and fluence. Here we report studies of cis to trans photoisomerization of azobenzene following femtosecond-scale laser pulses which are relatively short (10 fs) or long (100 fs) and which have a central frequency matched to either the first excited state (S1, or HOMO to LUMO in a molecular orbital picture) or the second (S2, or HOMO-1 to LUMO). The results presented here demonstrate that photoisomerization involves a rather intricate sequence of connected steps, with the nuclear and electronic degrees of freedom inextricably coupled. One important feature is the de-excitation required for the molecule to achieve its new ground-state after isomerization. If the primary excitation is to S1, then we find that only a single HOMO/LUMO avoided crossing is required and that this crossing occurs halfway along a rotational pathway involving the central CNNC dihedral angle. If the primary excitation is to S2, then the same HOMO/LUMO avoided crossing is observed, but it must be preceded by another avoided crossing that permits transfer of holes from the HOMO-1 to the HOMO, so that the HOMO is then able to accept electrons from the LUMO. We find that this earlier crossing can occur in either of two geometries, one near the cis configuration and the other near the trans. The fact that S2 (pi pi*) isomerization requires two steps may be related to the fact that isomerization yields are smaller for this (UV) excitation than for the S1 (n pi*, visible-light) excitation.  相似文献   

12.
Using a free-electron wave function the cross section for the excitation of the first excited state and that for the ionization of benzene in the inelastic collision with fast electrons have been estimated. In the ionization process the cross section has been found to be maximum when the secondary electron moves away with a kinetic energy of about 3 eV. For incident-electron energy above 20 eV the cross section for ionization is larger than that for excitation, while below it the reverse is the case.  相似文献   

13.
Although they represent the simplest possible charge-transfer reactions, the charge-transfer-to-solvent (CTTS) dynamics of atomic anions exhibit considerable complexity. For example, the CTTS dynamics of iodide in water are very different from those of sodide (Na-) in tetrahydrofuran (THF), leading to the question of the relative importance of the solvent and solute electronic structures in controlling charge-transfer dynamics. In this work, we address this issue by investigating the CTTS spectroscopy and dynamics of I- in THF, allowing us to make detailed comparisons to the previously studied I-/H2O and Na-/THF CTTS systems. Since THF is weakly polar, ion pairing with the counterion can have a substantial impact on the CTTS spectroscopy and dynamics of I- in this solvent. In this study, we have isolated "counterion-free" I- in THF by complexing the Na+ counterion with 18-crown-6 ether. Ultrafast pump-probe experiments reveal that THF-solvated electrons (e-THF) appear 380 +/- 60 fs following the CTTS excitation of "free" I- in THF. The absorption kinetics are identical at all probe wavelengths, indicating that the ejected electrons appear with no significant dynamic solvation but rather with their equilibrium absorption spectrum. After their initial appearance, ejected electrons do not exhibit any additional dynamics on time scales up to approximately 1 ns, indicating that geminate recombination of e-THF with its iodine atom partner does not occur. Competitive electron scavenging measurements demonstrate that the CTTS excited state of I- in THF is quite large and has contact with scavengers that are several nanometers away from the iodide ion. The ejection time and lack of electron solvation observed for I- in THF are similar to what is observed following CTTS excitation of Na- in THF. However, the relatively slow ejection time, the complete lack of dynamic solvation, and the large ejection distance/lack of recombination dynamics are in marked contrast to the CTTS dynamics observed for I- in water, in which fast electron ejection, substantial solvation, and appreciable recombination have been observed. These differences in dynamical behavior can be understood in terms of the presence of preexisting, electropositive cavities in liquid THF that are a natural part of its liquid structure; these cavities provide a mechanism for excited electrons to relocate to places in the liquid that can be nanometers away, explaining the large ejection distance and lack of recombination following the CTTS excitation of I- in THF. We argue that the lack of dynamic solvation observed following CTTS excitation of both I- and Na- in THF is a direct consequence of the fact that little additional relaxation is required once an excited electron nonadiabatically relaxes into one of the preexisting cavities. In contrast, liquid water contains no such cavities, and CTTS excitation of I- in water leads to local electron ejection that involves substantial solvent reorganization.  相似文献   

14.
We investigate the electron dynamics of Na9 + excited by strong fs laser pulses and fast proton collisions. Non-perturbative numerical simulations are performed using time-dependent density-functional methods on a semiclassical and fully quantal level. Both excitation mechanisms induce pronounced dipole oscillations accompanied by rapid ionization.  相似文献   

15.
《Chemical physics》2005,318(3):207-216
Deciphering control mechanisms from control pulse structures found in closed-loop learning experiments is often complicated due to the complexity of the pulse structure. Simplification of pulse forms is demonstrated by systematically reducing the complexity of the search space, applied on the model-like multi-photon ionization of NaK. Reducing the pulse complexity leads to the exclusion of participating excited states, thereby restricting the involved pathways. The phase function is parameterized by a sinusoidal spectral phase modulation, whose parameters are investigated with respect to the yield and the obtained optimal field. By progressively reducing the number of parameters and thereby the complexity of the phase modulation, control pulses are generated which are more and more reduced to the molecule’s primary dynamical properties. This enables to find optimized control pulses that can be subject to a simple intuitive interpretation.  相似文献   

16.
Electronic excitation of metal by intense laser pulses stimulates nuclear motions of adsorbates through nonadiabatic coupling, resulting in diffusion and desorption of adsorbates. These processes take place via precursor states: adsorbates whose vibrational modes with respect to substrate are highly excited. This paper reports the dynamics of precursor states of CO on Pt(111) probed by use of infrared-visible sum frequency generation with phase-sensitive detection, which allows us to obtain the second-order nonlinear susceptibility and thus the vibrational response function. Without pump pulses at 400 nm, the inverse Fourier transformation of the vibrational response function reveals a free induction decay of vibrational polarization of C-O stretching created by a short infrared pulse. The free induction decay is perturbed when an intense 400-nm pump pulse following the infrared pulse is irradiated, because diffusion and desorption of CO are induced by the pump pulse. The time evolution of instantaneous C-O stretching frequency retrieved from the perturbed free induction decay shows a redshift followed by a rapid reverse shift when the fluence of pump pulse is high enough to desorb CO. This indicates that the frustrated modes of CO is first substantially excited and then the parallel momentum of CO is converted to the normal one through mutual collisions, leading to substantial excitation of the external stretching mode of CO.  相似文献   

17.
A time-dependent theoretical method is used to describe a UV pump?CUV probe strategy to trace, at a femtosecond time scale, the motion of vibrational wave packets created in excited states of the hydrogen molecule by measuring single ionization probabilities. We use a spectral method to solve the time-dependent Schr?dinger equation in full dimensionality, including correlation and all electronic and vibrational degrees of freedom. A pump pulse initially creates a vibrational wave packet in the intermediate electronic excited states of $\hbox{H}_2$ . The frequency of the probe is chosen to ionize the target leaving the ion in a bound vibrational state. By varying the time delay between pulses, non-dissociative single ionization is enhanced or suppressed. Energy differential ionization probabilities are reported and compared with a model based on the Franck?CCondon approximation.  相似文献   

18.
Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.  相似文献   

19.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

20.
We show that molecular vibrations induced by resonant excitation pulses can be enhanced by pulse trains, compared to Fourier-limited pulses of equal pulse energy. As a proof-of-principle, a low frequency mode of Nile Blue at 600 cm(-1) is observed and amplified in a pump and probe experiment. In addition to previous experiments in our group, an increased population transfer to the excited electronic state is identified as an important element of the underlying physical mechanism. These results suggest an enhancement on the level of individual molecules rather than a macroscopic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号