首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, mesoporous silica materials with tuned pores and surface areas were successfully synthesized by adjusting the amount of applied hexane and controlling the hydrothermal temperature. The synthesized silica materials were then functionalized by an amine group to produce solid base catalysts and be applicable as efficient heterogeneous base catalysts for the Henry reaction. The mesoporous silica catalysts possessing large-pores and surface area expose their active catalytic sites and thereby improve contacts with reactants fulfilling the reactions expeditiously in comparison with solid base catalysts possessing small-pores and surface area. The results indicated that the yield of the products is significantly dependent on the structure of the applied solid base catalysts. The modulated large-pore solid base catalysts presented high catalytic activity in Henry reactions and could be reused for five consecutive cycles.  相似文献   

2.
In solid-phase peptide synthesis using the Fmoc/tBu strategy (SPPS-Fmoc/tBu), an orthogonal protection scheme of amino acids is used; specifically, the alpha-amine group is protected by the 9-fluorenylmethyloxycarbonyl (Fmoc) group, which is removed by weak bases, while side chains are protected by groups that are acid labile. We demonstrated that hydrazine hydrate is an efficient reagent for eliminating the Fmoc group in SPPS-Fmoc/tBu. First, experimental conditions were established for Fmoc group removal from Fmoc-Val-OH in solution. It was determined that the Fmoc group was completely removed with 16% hydrazine hydrate in DMF after 60?min at rt. Second, SPPS-Fmoc/tBu using hydrazine hydrate for Fmoc group removal was standardized. The Fmoc group removal was completed using 16% hydrazine hydrate in DMF for 10?min at rt (twice). When the reaction of Fmoc group removal was microwave-assisted, the reaction only required 30?s to efficiently remove the Fmoc group in SPPS-Fmoc/tBu. The method reported here can be routinely used, and it is equivalent to conventional SPPS-Fmoc/tBu methodologies where 4-methylpiperidine or piperidine is used.  相似文献   

3.
Jin Seok Choi 《Tetrahedron》2005,61(9):2493-2503
New deprotection conditions that provide a complete orthogonality between Tsc and Fmoc amino-protecting groups are described. The potential of these orthogonal deprotection conditions was then demonstrated by the efficient solid-phase synthesis of branched peptides 20 and 21 using doubly protected amino acids such as Tsc-Lys(Fmoc)-OH 4c and Fmoc-Lys(Tsc)-OH 4d.  相似文献   

4.
Sedighi M  Lipton MA 《Organic letters》2005,7(8):1473-1475
[reaction: see text] Carboxylic acids were converted in high yield to their 1,1-dimethylallyl (DMA) esters in two steps. Palladium-catalyzed deprotection of DMA esters was shown to be compatible with tert-butyl, benzyl, and Fmoc protecting groups, and Fmoc deprotection could be carried out selectively in the presence of DMA esters. DMA esters were also shown to be resistant to nucleophilic attack, suggesting that they will serve as alternatives to tert-butyl esters when acidic deprotection conditions need to be avoided.  相似文献   

5.
Reactions of ketones 1, nitromethane 2, and catalytic amount of piperidine 3 in the presence of mercaptan 6 generate beta-nitroalkyl sulfides 7-9. At 0 degrees C and by the use of dichloromethane as solvent, beta-nitroalkyl sulfides 7-9 can be oxidized by m-chloroperoxybenzoic acid (m-CPBA) 10 to generate beta-nitroalkyl sulfoxides 11-13 and undergo elimination in carbon tetrachloride solution to produce medium to high yield of 2,2-disubstituted 1-nitroalkenes 5. The irreversibility of the synthetic mechanism not only can overcome the reversibility of the Henry reaction in the synthesis of 2,2-disubstituted 1-nitroalkenes 5 but also can generate the major products "exo-nitro olefins"5c-e when cyclic ketones 1c-e were used. Under similar conditions, medium to high yield of 5-substituted-2-nitromethyl-2-phenylthioadamantane 17 also can be prepared from the reaction of 5-substituted-2-adamantanones 15, nitromethane 2, piperidine 3, thiophenol 6a. The intermediate17 can be oxidized by m-CPBA 10 in dichloromethane solution and then undergo elimination at room temperature or can be dissolved in solvent, coated on silica gel, and then heated at 90-100 degrees C to generate 5-substituted-2-nitromethyleneadamantane 16.  相似文献   

6.
A detailed and comprehensive overview is presented about the design, modeling, and synthesis, as well as spectroscopic characterization, of a new class of beta-sheet ligands. The characteristic feature of these compounds is a peptidic chimeric structure formed from a specific combination of aminopyrazolecarboxylic acids with naturally occurring alpha-amino acids. These hybrid peptides are designed with the aid of molecular modeling to exist mainly in an extended conformation. All their hydrogen bond donors and acceptors can be aligned at the bottom face in such a way that a perfect complementarity toward beta-sheets is obtained. Thus the aminopyrazoles impart rigidity and a highly efficient DAD sequence for the recognition of whole dipeptide fragments, whereas the natural alpha-amino acids are designed to mimick recognition sites in proteins, ultimately leading to sequence-selective protein recognition. The synthetic protocols either rely upon solution phase peptide coupling with a PMB protecting group strategy or solid-phase peptide coupling based on the Fmoc strategy, using the same protecting group. In solution, a key building block was prepared by catalytic reduction of a nitropyrazolecarboxylic acid precursor. Subsequently, it was (N-1)-protected with a PMB group, and elongated by HCTU- or T3P-assisted peptide coupling with dipeptide fragments, followed by PyClop-assisted coupling with another nitropyrazolecarboxylic acid building block. Final simultaneous deprotection of all PMB groups with hot TFA completed the high-yield protocol, which works racemization-free. After preparing a similar key building block with an Fmoc protection at N-3, we developed a strategy suitable for automated synthesis of larger hybrid ligands on a peptide synthesizer. Attachment of the first amino acid to a polystyrene resin over the Sieber amide linker is followed by an iterative sequence consisting of Fmoc deprotection with piperidine and subsequent coupling with natural alpha-amino acid via HATU/HOAt. High yields of free hybrid peptides are obtained after mild acidic cleavage from the resin, followed by deprotection of the PMB groups with hot TFA. The new aminopyrazole peptide hybrid compounds were characterized by various spectroscopic measurements including CD spectra, VT, and ROESY NMR experiments. All these accumulated data indicate the absence of any intramolecular hydrogen bonds and strongly support an extended conformation in solution, ideal for docking on to solvent-exposed beta-sheets in proteins. Initial results from aggregation tests of pathological proteins with these and related ligands look extremely promising.  相似文献   

7.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

8.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

9.
发现了在回流的甲苯中, 以硅胶为催化剂, 多种N-Boc保护的伯胺、仲胺、氨基酸的氨基都可以迅速脱除Boc. 该方法具有条件温和、操作简便、反应时间短和产率高等优点. 同时, 其它常用的保护基Cbz和Fmoc等在同样的条件下不受影响.  相似文献   

10.
Mesoporous silica with gold nanoparticles inside its pores was prepared by the soaking and ultrasound-induced reduction method. This new composite was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and high-resolution transmission electron microscopy (HRTEM) techniques. The results showed that nearly spherical-shaped gold nanoparticles, with mean size in diameter of 5.2 nm, are located in the pores, most of which are less than 6 nm in diameter. The ultrasonic irradiation time dependence of optical absorption for the soaked porous solid sample, as suggested by the variation in absorbance at 310 and 544 nm, indicated the reduction of Au (III) ions, and the nucleation and aggregation of gold nanoparticles within pores of mesoporous silica. Additionally, the reaction rates estimated phenomenologically by the absorbance decay at 310 nm for both the porous sample and the corresponding soaking solution presented the enhancement of the sonochemical reduction rate of Au (III) ions within pores of mesoporous silica. It is assumed that the extensive liquid-solid interfacial zones in the pores, due to the high specific surface areas and great porosity of the mesoporous solid, are the major regions where the efficient sonochemical reduction induced by the cavitation takes place. Copyright 2001 Academic Press.  相似文献   

11.
Kupihár Z  Kele Z  Tóth GK 《Organic letters》2001,3(7):1033-1035
[reaction: see text]. Ammonium tert-butyl H-phosphonate was used for the phosphorylation of Tyr- and Ser-containing peptides synthesized by an Fmoc strategy. This reaction, leading to a monoprotected peptide phosphate, was found to be highly efficient and generally applicable. Moreover, the method employed avoids undesired side reactions during chain elongation (pyrophosphate formation and beta-elimination catalyzed by piperidine).  相似文献   

12.
Laurent Bialy 《Tetrahedron》2005,61(34):8295-8305
Peptide nucleic acids have become, arguably, one of the most interesting of DNA mimics. Herein the efficient solution phase synthesis of four novel 1-(4,4-dimethyl-2,6-dioxacyclohexylidene)ethyl/4-methoxytrityl (Dde/Mmt) protected PNA monomers is reported which were then used to synthesise PNA-peptide conjugates through a mild Dde deprotection strategy, which was fully orthogonal to Fmoc chemistry, allowing at will Fmoc peptide and Dde-PNA synthesis.  相似文献   

13.
A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of thioacid-containing peptides. These peptides were readily converted to complex N-glycopeptides by using a fast and chemoselective one-pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site-selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.  相似文献   

14.
An efficient solid-phase method for the total synthesis of bacitracin A is reported. This work was undertaken in order to provide a general means of probing the intriguing mode of action of the bacitracins and exploring their potential for use against emerging drug-resistant pathogens. The synthetic approach to bacitracin A involves three key features: (1) linkage to the solid support through the side chain of the L-asparaginyl residue at position 12 (L-Asn(12)), (2) cyclization through amide bond formation between the alpha-carboxyl of L-Asn(12) and the side chain amino group of L-Lys(8), and (3) postcyclization addition of the N-terminal thiazoline dipeptide as a single unit. To initiate the synthesis, Fmoc L-Asp(OH)-OAllyl was attached to a PAL resin. The chain of bacitracin A was elaborated in the C-to-N direction by sequential piperidine deprotection/HBTU-mediated coupling cycles with Fmoc D-Asp(OtBu)-OH, Fmoc L-His(Trt)-OH, Fmoc D-Phe-OH, Fmoc L-Ile-OH, Fmoc D-Orn(Boc)-OH, Fmoc L-Lys(Aloc)-OH, Fmoc L-Ile-OH, Fmoc D-Glu(OtBu)-OH, and Fmoc L-Leu-OH. The allyl ester and allyl carbamate protecting groups of L-Asn(12) and L-Lys(8), respectively, were simultaneously and selectively removed by treating the peptide-resin with palladium tetrakis(triphenylphosphine), acetic acid, and triethylamine. Cyclization was effected by PyBOP/HOBT under the pseudo high-dilution conditions afforded by attachment to the solid support. After removal of the N-terminal Fmoc group, the cyclized peptide was coupled with 2-[1'(S)-(tert-butyloxycarbonylamino)-2'(R)-methylbutyl]-4(R)-carboxy-Delta(2)-thiazoline (1). The synthetic peptide was deprotected and cleaved from the solid support under acidic conditions and then purified by reverse-phase HPLC. The synthetic material exhibited an ion in the FAB-MS at m/z 1422.7, consistent with the molecular weight calculated for the parent ion of bacitracin A (MH(+) = C(73)H(84)N(10)O(23)Cl(2), 1422.7 g/mol). It was also indistinguishable from authentic bacitracin A by high-field (1)H NMR and displayed antibacterial activity equal to that of the natural product, thus confirming its identity as bacitracin A. The overall yield for the solid-phase synthesis was 24%.  相似文献   

15.
Here, we report the solid-phase synthesis of a 17-mer cyclopeptide which is expected to have anti-angiogenic properties. The peptidic synthesis is performed on an allyldimethylsilyl polystyrene support loaded by metathesis with a conveniently functionalized d-Tyrosine amino acid. The linear peptide was assembled by standard Fmoc chemistry and on-resin cyclization was enabled after selective deprotection of the C-terminal group with 2% hydrazine/DMF at room temperature. Final cleavage was realized under mild acidic conditions allowing to obtain a cyclopeptide under partially protected form.  相似文献   

16.
The surface of silica was modified by mercaptopropyl, chloropropyl, aminopropyl, and methacryloxypropyl groups by the treatment of silica with the corresponding silane coupling agents, and the effects of functional groups on the surface on the polymerization of vinyl monomers initiated by benzoyl peroxide or 2,2-azobisisobutyronitrile were investigated. Although the rate of the polymerization of vinyl monomers in the presence of silica was almost equal to that in the absence of silica, a part of polymer formed was grafted onto silica surface. The polymerization was considerably retarded in the presence of these functionalized silicas and the corresponding polymers were effectively grafted onto the surface. The molecular weight of ungrafted polymer formed in the presence of the functionalized silica was lower than that formed in the presence of unmodified silica. This indicates that the chain transfer reaction of growing polymer radical to functionalized silica surface forms radicals on the surface, which then couples with growing polymer radical and/or reinitiates the polymerization to give rise to the grafting of polymers onto the surface. In the case of silica having methacryloxypropyl groups, the grafting based on the copolymerization of vinyl monomer with the surface methacryloxypropyl groups was considered to successfully proceed.  相似文献   

17.
The thermodynamics of a chemical reaction confined at a solid surface was investigated through kinetic measurements of a model unimolecular reaction. The thermal cleavage of ester groups grafted at the surface of solid silica was investigated together with complementary physicochemical characterization of the grafted species. The ester molecules were chemically grafted to the silica surface and subsequently cleaved into the carboxylic acids. A grafting process of a reproducible monolayer was designed using the reaction of monofunctional organosilane from its gas phase. The thermal deprotection step of the ester end-group was investigated. The thermal deprotection reaction behaves in quite a specific manner when it is conducted at a surface in a grafted layer. Different organosilane molecules terminated by methyl, isopropyl and tert-butyl ester groups were grafted to silica surface; such functionalized materials were characterized by elemental analysis, IR and NMR spectroscopy, and thermogravimetric analysis, and the thermodynamic parameters of the thermal elimination reaction at the surface were measured. The limiting factor of such thermal ester cleavage reaction is the thermal stability of grafted ester group according to the temperature order: tert-butyl < i-propyl < methyl. Methyl ester groups were not selectively cleaved by temperature. The thermal deprotection of i-propyl ester groups took place at a temperature close to the thermal degradation of the organofunctional tail of the silane. The low thermolysis temperature of the grafted tert-butyl esters allowed their selective cleavage. There is a definite influence of the surface on the reaction. The enthalpy of activation is lower than in the gas phase because of the polarity of the reaction site. The major contribution is entropic; the negative entropy of activation comes from lateral interactions with the neighbor grafted molecules because of the high grafting density. Such reaction is an original strategy to functionalize the silica surface by carboxylic acid groups by means of a simple, reproducible, and efficient process involving in situ thermolysis of ester groups.  相似文献   

18.
The synthesis of highly functionalized piperidine derivatives using amine functionalized maltitol-cored dendritic polymer (MAL-G0) in acetonitrile as the reaction medium is reported. A variety of piperidine derivatives were synthesized and the reaction gave an excellent yield of 89%–95%. The highly functionalized nature of the catalyst provided large number of active sites which resulted in good yield within a short period of time. Maltitol is a carbohydrate polyol system which was chosen here as the core for the synthesis of the dendritic catalyst; it was an effective approach for the preparation of piperidine like medicinal compounds. Maltitol-cored dendritic polymer was effectively synthesized and characterized using GPC, TG, UV–Visible, IR, and NMR techniques and also all the synthesized piperidine derivatives were characterized using LCMS, IR, and NMR techniques.  相似文献   

19.
We have used sulfide "Safety Catch" linkers to anchor typical medicinal chemistry functional groups to amine resins. Compounds are loaded as the ester, carbamate, or amine. At the end of the synthesis, the linker is activated by peracid. The sulfone resins are then cleaved by beta-elimination in the gas phase or in solution by secondary amines to produce acids and primary, secondary, or tertiary amines. Comparison of cleavage rates to other sulfone resins including SEM showed significantly faster cleavage for this system with conditions similar to Fmoc deprotection. Application of this strategy to a medicinal chemistry library gives good yields and purities of the resulting compounds.  相似文献   

20.
Ohla S  Beyreiss R  Scriba GK  Fan Y  Belder D 《Electrophoresis》2010,31(19):3263-3267
A microchip-based assay to monitor the conversion of peptide substrates by human recombinant sirtuin 1 (hSIRT1) is presented. For this purpose a fused silica microchip consisting of a microfluidic separation structure with an integrated serpentine micromixer has been used. As substrate for the assay, we used a 9-fluorenylmethoxycarbonyl (Fmoc)-labeled tetrapeptide derived from the amino acid sequence of p53, a known substrate of hSIRT1. The Fmoc group at the N-terminus resulting from solid-phase peptide synthesis enabled deep UV laser-induced fluorescence detection with excitation at 266 nm. The enzymatic reaction of 0.1 U/μL hSIRT1 was carried out within the serpentine micromixer using a 400 μM solution of the peptide in buffer. In order to reduce protein adsorption, the reaction channel was dynamically coated with hydroxypropylmethyl cellulose. The substrate and the deacetylated product were separated by microchip electrophoresis on the same chip. The approach was successfully utilized to screen various SIRT inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号