首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation reactions of 4′-nitrobenzo-15-crown-5 (4′NB15C5) with Zn2+, Mn2+, Cr3+ and Sn4+ cations were studied in acetonitrile–ethanol (AN–EtOH) binary solvent mixtures at different temperatures by the electrical conductometry method. The stability constants of the resulting 1:1 complexes were determined from computer fitting of the conductance versus mole ratio data. The results show that the selectivity order of 4′NB15C5 for the metal cations in the AN–EtOH (mol-%AN=76) binary solvent at 298.15 K is: Cr3+>Mn2+≈Zn2+>Sn4+, but the selectivity order changes with the composition of the mixed solvents. A nonlinear relationship was observed between the stability constants (log 10 K f) of these complexes and the composition of the AN–EtOH binary solvents. The corresponding thermodynamic parameters (DHco, DSco)(\Delta H_{\mathrm{c}}^{\mathrm{o}}, \Delta S_{\mathrm{c}}^{\mathrm{o}}) were obtained from the temperature dependence of the stability constants using van’t Hoff plots. The results show that the values and also the sign of these parameters are influenced by the nature and composition of the mixed solvents.  相似文献   

2.
Reaction of [Au(PPh3)2(tht)2](OSO2CF3)3 with RaaiR′ in CH2Cl2 medium following ligand addition leads to [Au(PPh3)2(RaaiR′)](OTf)3 [RaaiR′ = p-R–C6H4–N=N–C3H2–NN–1–R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), PPh3 is triphenylphosphine, OSO2CF3 is the triflate anion, tht is tetrahydrothiophen]. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. The 1H-nmr spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C-nmr spectrum suggests the molecular skeleton. In the 1H–1H COSY spectrum as well as contour peaks in the 1H–13C heteronuclear multiple-quantum coherence (HMQC) spectrum assign the solution structure. Electrochemistry assign ligand reduction part rather than metal oxidation.  相似文献   

3.
The complexation processes between Fe3+, Y3+, Cd2+, Sn4+, Ce3+ and Au3+ metal cations with macrocyclic ligand, 4′-nitrobenzo-15-crown-5 (4′NB15C5), were studied in acetonitrile (AN), methanol (MeOH) and nitromethane (NM) solvents at different temperatures using conductometric method. The conductance data show that the stoichiometry of the complexes formed between this macrocyclic ligand and Cd2+, Au3+ cations is 1: 1 (ML), but in the case of Fe3+, Y3+ and Ce3+ metal cations, 2: 1 (M2: L) and 2: 2 [M2: L2] complexes are formed in nitromethane solutions. The results show, that the selectivity of 4’NB15C5 for the studied metal cations in methanol solutions at 15°C is: Sn4+ > Cd2+ > Y3+ > Fe3+ ∼ Ce3+ > Au3+, but in the case of acetonitrile, the stability order was found to be: Y3+ > Au3+ > Fe3+ > Cd2+. The values of stability constants of the 1: 1 [M: L] complexes were determined from conductometric data using a GENPLOT computer program. The values of thermodynamic parameter (ΔH c o and ΔH c o) for formation of the complexes were obtained from temperature dependence of the stability constants, using the van’t Hoff plots. The results show that the values of standard enthalpy (ΔH c o) and standard entropy (ΔH c o) change with the nature of the non aqueous solvents.  相似文献   

4.
Organic solvent- and detergent-resistant proteases are important from an industrial viewpoint. However, they have been less frequently reported and only few of them are from actinomycetes. A metalloprotease from Streptomyces olivochromogenes (SOMP) was purified by ion exchange with Poros HQ and gel filtration with Sepharose CL-6B. Apparent molecular mass of the enzyme was estimated to be 51 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and gelatin zymography. The activity was optimum at pH 7.5 and 50 °C and stable between pH 7.0 and 10.0. SOMP was stable below 45 °C and Ca2+ increased its thermostability. Ca2+ enhanced while Co2+, Cu2+, Zn2+, Mn2+, and Fe2+ inhibited the activity. Ethylenediaminetetraacetic acid and ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, but not phenylmethylsulfonyl fluoride, aprotinin, and pefabloc SC, significantly suppressed the activity, suggesting that it might be a metalloprotease. Importantly, it is highly resistant against various detergents, organic solvents, and oxidizing agents, and the activity is enhanced by H2O2. The enzyme could be a novel protease based on its origin and peculiar biochemical properties. It may be useful in biotechnological applications especially for organic solvent-based enzymatic synthesis.  相似文献   

5.
2-(Methyl)-4-(arylazo)imidazole (RLH) (1, 2) are new series of azoimidazoles. Upon treatment of alkylhalide in dry THF in presence of NaH has synthesised 1-alkyl-2-(methyl)-4-(arylazo)imidazole (RLR′) (3, 4). They belong to the azoimine family of N,N′-chelating ligand. They stabilize the Cu(I) oxidation state and we have synthesized [Cu(RLR′)2](ClO4) (5, 6). These complexes show a moderately intense visible band (500–600 nm) which has been assigned to 3d(Cu) → π*(ligand) transition. Ag(I) complexes of RLR′ (7, 8) are also very stable under ambient conditions and show weak transitions in the visible region. The Cu(I)-complexes show high potential Cu(II)/Cu(I) redox couple > 0.4 V vs Ag, AgCl/Cl reference electrode. All these complexes have been structurally characterized by 1H NMR spectroscopic data.  相似文献   

6.
Novel photoelectrochemical processes are observed upon irradiation of the liquid|liquid|solid triple interface at microdroplets of N,N,N′,N′-tetrahexyl-para-phenylenediamine (THPD) deposited onto a basal plane pyrolytic graphite electrode and immersed in aqueous electrolyte solution. In the presence of neutral THPD, cathodic photo responses, and in the presence of THPD+, anodic photo responses with anion-dependent characteristics, are observed. A maximum in the photocurrents observed at intermediate coverage of the electrode surface suggests that the triple interface THPD|electrode|aqueous electrolyte is the reaction zone. This is the first report of photoelectrochemical processes at this type of interface. Electronic Publication  相似文献   

7.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-diaminomethyl-1,10-phenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-diaminomethyl-1,10-phenanthroline (L2) were synthesized. The hydrolytic kinetics of p-nitrophenyl phosphate (NPP) catalyzed by complexes of L1 and L2 with La(III), Gd(III) have been studied. Both LnL and LnLH−1 have been examined as catalysis for the hydrolysis of NPP in aqueous solution at 298 K, I = 0.10 mol dm−3 KNO3 at the pH range 7.4–9.1, respectively. Kinetic studies show that both LnL and LnLH−1 have catalytic activity, but LnLH−1 is more active than LnL in the hydrolysis of NPP. The second-order rate constants for the hydrolysis of NPP are kGdL1H−1 = 0.01399 mol−1 dm3 s−1, kGdL1 = 0.0000110 mol−1 dm3 s−1 for complexes GdL1H−1 and GdL1, respectively. A new mechanism was proposed for the hydrolysis of NPP catalyzed by LnL and LnLH−1.  相似文献   

8.
3,3,3-Trifluoro-N′-(3-trifluoromethylphenyl)-1,2-propanediamine (5) was synthesized by the reaction of 2-diazo-1,1,1-trifluoro-3-nitropropane or 3,3,3-trifluoro-1-nitropropene with 3-aminobenzotrifluoride followed by the reduction of the nitro group. The Michael 1,4-addition of diamine 5 to acrylic acid occurs only at the N(1) atom and affords N-mono-or N,N-dicarboxyethyl derivatives 6 and 7, depending on the reactant ratio. Protolytic equilibria 5–7 in aqueous solutions were studied by pH-potentiometry and UV spectroscopy. Only the aliphatic amino group can be protonated in an aqueous solution, while the aromatic amino group remains unprotonated even in 12 M HCl. The stability constants of transition metal (Cu2+, Ni2+, Zn2+) complexes with ligands 5–7 were determined by pH-potentiometric titration. The stability of the complexes and selectivity of the ligands toward Cu2+ ions increase with an increase in the number of N-carboxyethyl groups. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2465–2469, November, 2005.  相似文献   

9.
Three novel tripodal ligands, N,N′,N′′-tri-(3′-phenylpropionic acid-2′-yl-)-1,3,5-triaminomethylbenzene (Ll), N,N′,N′′-tri-(4′-methylvaleric acid-2′-y1-)-1,3,5-triaminomethylbenzene (L2) and N,N′,N′′-tri-(3′methylvaleric acid-2′-yl-)-1,3,5-triaminomethylbenzene (L3), have been synthesized and fully characterized. The stabilizing ability of complexes of the three ligands with transition metal ions Cu(II), Ni(II), Zn(II) and Co(II) and rare earth metal ions La(III), Nd(III), Sm(III), Eu(III) and Gd(III) has been investigated by the pontentiometric method in water and in aqueous KNO3 (0.1 mol dm−3) at 25.0±0.1 °C, respectively. The results show that there is a great deal of difference between two series of complexes’ stabilities. An explanation of the difference has been given.  相似文献   

10.
Summary. A new porous solid macrocyclic 1,4,7,11,14-pentaazapentadecane-3,15-dione polysiloxane ligand system of the general formula P–(CH2)3–C11H22O2N5 (where P represents [Si–O]n siloxane network) has been prepared by the reaction of polysiloxane-immobilized iminobis(N-(2-aminoethyl)acetamide) with 1,3-dibromopropane. The FTIR and XPS results confirm the introduction of the macrocyclic functional ligand group into the polysiloxane network. The new macrocyclic polysiloxane ligand system exhibits high potential for the uptake of metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+).  相似文献   

11.
Solution equilibrium studies on Cu2+–L1–L2 ternary systems have been performed by pH-potentiometry, UV–Vis spectrophotometry and EPR methods (L1 corresponds to polyamines such as ethylenediamine (en), diethylenetriamine (dien), or N,N,N′,N′,N″-pentamethyldiethylenetriamine (Me5dien) and L2 represents 1-aminoethylphosphonic acid (α-alaninephosphonic acid)). The obtained results suggest the formation of heteroligand complexes with [Cu(L1)(α-Ala(P))] stoichiometry in all studied systems. Additionally, in the system with en the [Cu(en)(α-Ala(P))H−1] species is formed in basic solution. Our spectroscopic results indicate tetragonal geometry for the [Cu(en)(α-Ala(P))] species, geometry slightly deviated from square pyramidal for the [Cu(dien)(α-Ala(P))] complex and strongly deviated from square pyramidal towards trigonal bipyramidal for the [Cu(Me5dien)(α-Ala(P))] species. The coordination modes in these heteroligand complexes are discussed.  相似文献   

12.
The effect of the structure of the organic precursor molecule on the electroinsertion of anions and on the formation of materials in the ionic liquid state is compared for three compounds, para-N, N, N′, N′-tetrahexylphenylenediamine (p-THPD), meta-N, N, N′, N′-tetrahexylphenylene diamine (m-THPD), and para-N, N, N′, N′-tetrakis(6-methoxyhexyl)phenylenediamine (p-TMHPD), by characterising their condensed phase voltammetric properties in aqueous media. The electrochemically driven anion insertion in p-THPD and p-TMHPD in the presence of ClO4 , F, Cl, Br, I, and SO4 2− is shown to be extremely sensitive to structure. The introduction of the methoxy end groups in p-TMHPD causes (1) a considerable shift to more negative electroinsertion potentials, (2) a less stable response which upon continuous cycling decreases, and (3) considerably lower anion selectivity. For the insertion of sulfate, only p-TMHPD yields an electrochemical response which is shown to be consistent with insertion of the dianion SO4 2−. The electrochemical oxidation of a deposit of m-THPD is accompanied by anion insertion and a chemical reaction step in an EC-type electrochemical process. The product of the chemical step is electrochemically active and results in a new reversible electroinsertion process. Starting materials and products of the microdroplet reactions are characterised by Maldi-TOF mass spectrometry and a reaction mechanism based on condensed phase polymerisation is proposed. Received: 15 November 1999 / Accepted: 2 December 1999  相似文献   

13.
The aqueous reaction of ammonium tetrathiometalates (NH4)2[MS4] (M = Mo or W) with (dbtmen)Br2 · 2H2O (dbtmen = N,N′-dibenzyl-N,N,N ′, N′-tetramethylethylenediammonium dication) results in the formation of the highly insoluble compounds (dbtmen)[MoS4] (1) and (dbtmen)[WS4] (2) in near quantitative yields. Compounds (1) and (2) have been characterized by elemental analysis, spectroscopic methods, X-ray powder diffraction and TG–DTA. Both compounds exhibit nearly identical IR spectra and X-ray powder patterns. The compounds exhibit a single strong signal for the asymmetric M–S stretching vibration at 475 cm−1 in (1) and at 457 cm−1 in (2). Complex (2) is thermally more stable than the corresponding Mo analogue (1). Thermal decomposition products of (1) and (2) are carbon contaminated amorphous metal disulfides and are formulated as MoS1.99C2.06N0.07 and WS1.75C3.02 based on elemental analysis of the residue.  相似文献   

14.
A new porous solid macrocyclic 1,4,7,11,14-pentaazapentadecane-3,15-dione polysiloxane ligand system of the general formula P–(CH2)3–C11H22O2N5 (where P represents [Si–O]n siloxane network) has been prepared by the reaction of polysiloxane-immobilized iminobis(N-(2-aminoethyl)acetamide) with 1,3-dibromopropane. The FTIR and XPS results confirm the introduction of the macrocyclic functional ligand group into the polysiloxane network. The new macrocyclic polysiloxane ligand system exhibits high potential for the uptake of metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+).  相似文献   

15.
The preparation and characterization of the M′–M′′–O nitrate–tartrate (M′ = Ca, Ba, Gd and M′ = W, Mo) precursor gels synthesized by simple, inexpensive, and environmentally benign aqueous sol–gel method is reported. The obtained gels were studied by thermal (TG/DSC) analysis. TG/DSC measurements revealed the possible decomposition pathway of synthesized M′–M′′–O nitrate–tartrate gels. For the synthesis of different metal tungstates and molybdates, the precursor gels were calcined at different temperatures (650, 800, and 900 °C). According to the X-ray diffraction (XRD) analysis data, the crystalline compounds CaMo1-x W x O4 doped with Ce3+ ions, BaMo1-x W x O4 doped with Eu3+ ions and Gd2Mo3O12 were obtained from nitrate–tartrate gels annealed at 650–900 °C temperatures. The XRD data confirmed that the fully crystalline single-phase powellite, scheelite, or Gd2(MoO4)3 structures were formed already at 650 °C. Therefore, the suggested sol–gel method based on the complexation of metal ions with tartaric acid is suitable for the preparation of mixed tungstates–molybdates at relatively low temperature in comparison with solid-state synthesis.  相似文献   

16.
Three chromium(III) complexes with asparagine (Asn) and histidine (His) of the [Cr(ox)2(Aa)]2− type, where Aa = N,O–Asn, N,O–His or N,N′–His, were obtained and characterized in solution. The complexes with N,O–Aa undergo acid-catalysed aquation to give a free amino acid and cis-[Cr(ox)2(H2O)2], whereas the complex with N,N′–His undergoes parallel reaction paths: (1) isomerization to the N,O–His complex and (2) liberation of an oxalate ligand. Kinetics of the N,O–Aa complexes in HClO4 media were studied spectrophotometrically under pseudo-first-order conditions. The absorbance changes were attributed to the chelate ring opening at the Cr–N bond. The linear dependence of rate constants on [H+] was established, and a mechanism for the chelate ring cleavage was postulated. The existence of a metastable intermediate with O-monodentate Aa ligand was proved experimentally. Effect of [Cr(ox)2(Aa)]2− on 3T3 fibroblasts proliferation was studied. The tests revealed low cytotoxicity of the complexes. Complexes with Ala, His and Cys are good candidates for biochromium sources.  相似文献   

17.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

18.
An Cu(II)-imprinted interpenetrating polymer network (IPN) gel of epoxy-diethylenetriamine and methacrylic acid-acrylamide-N,N′-methylene-bis-(acrylamide) was synthesized by the ionic imprint polymer (IIP) technique. The first polymer network is formed by epoxy gelation with diethylenetriamine. The other is formed by copper methacrylate co- polymerization with acrylamide and cross-linker N,N′-methylene-bis-(acrylamide). The adsorption–desorption characteristics of the IPN gel as a highly selective solid-phase extraction (SPE) and preconcentration adsorbent for Cu2+ from aqueous solution were investigated. The experimental results show that trace Cu2+ ions can be quantitatively enriched at pH 5 with recovery >95%. The maximum static adsorption capacity of the ion-imprinted functionalized gel adsorbent was 76 mg g−1. Comparing with non-imprinted IPN gel, the imprinted IPN gel has higher adsorption capacity and selectivity for Cu2+ by the static adsorption–desorption experiment. Simultaneously, the times of adsorption equilibration and complete desorption were remarkably short. The precision (RSD) for 11 replicate adsorbent extractions of 20 ng mL−1 Cu2+ was 3.4%. The established procedure was applied to two real water samples with satisfactory results. The prepared ion-imprinted IPN gel adsorbent was shown to be promising for solid-phase extraction coupled with atomic absorption spectrometry (AAS) for the determination of trace copper in real samples. In addition, the coordination interaction of Cu2+ and functional groups of the IPN gel adsorbent was primarily discussed by FT-IR spectra.  相似文献   

19.
A series of hybrid mesoporous SBA-15 materials containing four iron(III) Schiff base complexes of the type [FeL x (NO3)] (x = 4–7, L = N,N′-bis(salicylidene)ethylenediamine, N,N′-bis(salicylidene)diethylenetriamine, N,N′-bis(salicylidene)o-phenylenediamine, N,N′-bis(3-nitro-salicylidene)ethylenediamine) was synthesized by a post-grafting route. The XRD, N2 adsorption/desorption and TEM measurements confirmed the structural integrity of the mesoporous hosts, and the spectroscopic characterization techniques (FT-IR, UV–vis spectroscopy, 1H NMR) confirmed the ligands and the successful anchoring of iron(III) Schiff base complexes over the modified mesoporous support. Quantification of the supported ligand and metal was carried out by TG/DSC and ICP-AES techniques. The catalyst FeL7-SBA resulting from N,N′-bis(3-nitro-salicylidene)ethylenediamine) ligand was considerably active for the aerobic epoxidation of styrene, in which the highest conversion of styrene reached 83.6%, and the selectivity to styrene oxide was 83.0%. Moreover, it was also found that the catalytic activity increases with the decrease in the electron-donating ability of the Schiff bases, and the selectivity varies according to the types of substituents in the ligands.  相似文献   

20.
Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of N,N,N′,N′-tetraisobutyl-2,6-dipicolinamide [T(iBu)DPA, L] has been investigated. The equilibrium data have been explained assuming that the species HL+, HL2 +, CaL2 2+, SrL2 2+ and SrL3 2+ are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号