共查询到20条相似文献,搜索用时 0 毫秒
1.
Albrecht M Janser I Houjou H Fröhlich R 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(11):2839-2850
A series of bisimine-bridged dicatechol ligands 2-H(4)-5-H(4) were synthesized and were used to prepare triple-stranded dinuclear helicate-type complexes with a length of up to more than 2 nm. X-ray structural analyses of Na(4)[(2)(3)V(2)], Na(4)[(3)(3)Ti(2)], Na(4)[(4)(3)Ti(2)], and Na(4)[(5)(3)Ti(2)], as well as temperature-dependent NMR investigations of Na(4)[(4)(3)Ti(2)] and Na(4)[(5)(3)Ti(2)] show that, in the case of the rigid linear ligands 2 and 3, and of the ligand 5, which possesses C(2h) symmetry in its idealized structure, homochiral helicates are diastereoselectively formed. Ligand 4, on the other hand, with idealized C(2v) symmetry, leads with surprisingly high selectivity to the formation of the heterochiral meso-helicate. This is attributed to the ability of ligand 4 to adopt a less-restricted conformation in the meso compound than in the helical complex. NMR investigations indicate that both complex units of Na(4)[(4)(3)Ti(2)] invert (LambdaDelta-->DeltaLambda) simultaneously, while in the case of Na(4)[(5)(3)Ti(2)] a stepwise racemization proceeds. 相似文献
2.
Floquet S Ouali N Bocquet B Bernardinelli G Imbert D Bünzli JC Hopfgartner G Piguet C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2003,9(8):1860-1875
The segmental tris-tridentate ligand L7 reacts with stoichiometric quantities of Ln(III) (Ln=La-Lu) in acetonitrile to give the complexes [Ln(2)(L7)(3)](6+) and [Ln(3)(L7)(3)](9+). Formation constants point to negligible size-discriminating effects along the lanthanide series, but Scatchard plots suggest that the self-assembly of the trimetallic triple-stranded helicates [Ln(3)(L7)(3)](9+) is driven to completion by positive cooperativity, despite strong intermetallic electrostatic repulsions. Crystallization provides quantitatively [Ln(3)(L7)(3)](CF(3)SO(3))(9) (Ln=La, Eu, Gd, Tb, Lu) and the X-ray crystal structure of [Eu(3)(L7)(3)](CF(3)SO(3))(9).(CH(3)CN)(9).(H(2)O)(2) (Eu(3)C(216)H(226)N(48)O(35)F(27)S(9), triclinic, P1, Z=2) shows the three ligand strands wrapped around a pseudo-threefold axis defined by the three metal ions rigidly held at about 9 A. Each metal ion is coordinated by nine donor atoms in a pseudo-trigonal prismatic arrangement, but the existence of terminal carboxamide units in the ligand strands differentiates the electronic properties of the terminal and the central metallic sites. Photophysical data confirm that the three coordination sites possess comparable pseudo-trigonal symmetries in the solid state and in solution. High-resolution luminescence analyses evidence a low-lying LMCT state affecting the central EuN(9) site, so that multi-metal-centered luminescence is essentially dominated by the emission from the two terminal EuN(6)O(3) sites in [Eu(3)(L7)(3)](9+). New multicenter equations have been developed for investigating the solution structure of [Ln(3)(L7)(3)](9+) by paramagnetic NMR spectroscopy and linear correlations for Ln=Ce-Tb imply isostructurality for these larger lanthanides. NMR spectra point to the triple helical structure being maintained in solution, but an inversion of the magnitude of the second-rank crystal-field parameters, obtained by LIS analysis, for the LnN(6)O(3) and LnN(9) sites with respect to the parameters extracted for Eu(III) from luminescence data, suggests that the geometry of the central LnN(9) site is somewhat relaxed in solution. 相似文献
3.
Stadler AM Kyritsakas N Vaughan G Lehn JM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(1):59-68
Reaction of a bent py-hyz-pym-hyz-pym 1 and of a linear py-hyz-py-hyz-pym 3 (py=pyridine; pym=pyrimidine; hyz=hydrazone) ligand strands with silver(I) tetrafluoroborate in CH(3)NO(2) generates double-helical dinuclear 2 and trinuclear 4 complexes. These complexes form polymeric, highly ordered solid-state structures, with wirelike, linear continuous or discontinuous polycationic Ag(n) (+) arrays with Ag--Ag distances of 2.78 to 4.42 A. Ligand 5, an isomer of 1, is found to yield a [2x2] grid-type complex 6. Titration experiments reveal the formation of linear rack-type dinuclear species from 1 and 5. Acid-base modulated, reversible interconversion between strand 1 and double helicate 2 may be achieved by using tren as a competing complexing agent (tren=N(CH(2)CH(2)NH(2))(3)). Progressive addition of silver(I) ions to a 1:1 mixture of 1 and 5 leads to the preferential formation of the double helicate 2 over the grid complex 6, illustrating a process of self-organisation with selection of the correct ligand. 相似文献
4.
Hamacek J Borkovec M Piguet C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(18):5217-5226
5.
Marquis A Smith V Harrowfield J Lehn JM Herschbach H Sanvito R Leize-Wagner E Van Dorsselaer A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(21):5632-5641
Double helicates are known to exhibit self-recognition characteristics determined by the coordination geometry of the metal involved as well as by the topicity of the ligands. Combining tridentate (terpyridine, T) or bidentate (bipyridine, B) subunits in a tritopic strand affords a set of ligands able to assemble by pairs to form double helicates, homo- or heterostranded, homo- or heterotopic, depending on the coordination properties of the metals involved. The four ligand strands, BBB, TTT, BBT, and TBT form constitutionally dynamic sets of double helicates with the metal ions Cu(I), Cu(II), and Zn(II); these helicates correspond to the correct coding of the BB, BT, and TT pairs for tetra-, penta-, and hexacoordinate Cu(I), Cu(II), and Zn(II) cations, respectively. 相似文献
6.
Lama M Mamula O Kottas GS Rizzo F De Cola L Nakamura A Kuroda R Stoeckli-Evans H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(26):7358-7373
The pinene-bipyridine carboxylic derivatives (+)- and (-)-HL, designed to form configurationally stable lanthanide complexes, proved their effectiveness as chiral building blocks for the synthesis of lanthanide-containing superstructures. Indeed a self-assembly process takes place with complete diastereoselectivity between the enantiomerically pure ligand L(-) and Ln(III) ions (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er), thus leading to the quantitative formation of a trinuclear supramolecular architecture with the general formula [Ln(3)(L)(6)(mu(3)-OH)(H(2)O)(3)](ClO(4))(2) (abbreviated as tris(Ln[L](2))). This class of C(3)-symmetrical compounds was structurally characterized in the solid state and solution. Electrospray (ES) mass spectrometric and (1)H NMR spectroscopic analyses indicated that the trinuclear species are maintained in solution (CH(2)Cl(2)) and are stable in the investigated concentration range (10(-2)-10(-6) m). The photophysical properties of the ligand HL and its tris(Ln[L](2)) complexes were studied at room temperature and 77 K, thus demonstrating that the metal-centered luminescence is well sensitized both for the visible and near-IR emitters. The chiroptical properties of tris(Ln[L](2)) complexes were investigated by means of circular dichroism (CD) and circularly polarized luminescence (CPL). A high CD activity is displayed in the region of pi-pi* transitions of bipyridine. CPL spectra of tris(Eu[(+)-L](2)) and tris(Tb[(+)-L](2)) present large dissymmetry factors g(em) for the sensitive transitions of Eu(III) ((5)D(0)-->(7)F(1), g(em)=-0.088) and Tb(III) ((5)D(4)-->(7)F(5), g(em)=-0.0806). The self-recognition capabilities of the system were tested in the presence of artificial enantiomeric mixtures of the ligand. (1)H NMR spectra identical to those of the enantiomerically pure complexes and investigations by CD spectroscopic analysis reveal an almost complete chiral self-recognition in the self-assembly process, thus leading to mixtures of homochiral trinuclear structures. 相似文献
7.
8.
Jin H Qiu H Sakamoto Y Shu P Terasaki O Che S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(21):6413-6420
Using lipids (N-acyl amino acids) and 3-aminopropyltriethoxysilane as structure- and co-structure-directing agents, mesoporous silicas with four different morphologies, that is, helical ribbon (HR), hollow sphere, circular disk, and helical hexagonal rod, were synthesized just by changing the synthesis temperature from 0 degrees C to 10, 15, or 20 degrees C. The structures were studied by electron microscopy. It was found that 1) the structures have double-layer disordered mesopores in the HR, radially oriented mesopores in the hollow sphere, and highly ordered straight and chiral 2D-hexagonal mesopores in the disklike structure and helical rod, respectively; 2) these four types of mesoporous silica were transformed from the flat bilayered lipid ribbon with a chain-interdigitated layer phase through a solid-solid transformation for HR formation and a dissolving procedure transformation for the synthesis of the hollow sphere, circular disk, and twisted morphologies; 3) the mesoporous silica helical ribbon was exclusively right-handed and the 2D-hexagonal chiral mesoporous silica was excessively left-handed when the L-form N-acyl amino acid was used as the lipid template; 4) the HR was formed only by the chiral lipid molecules, whereas the 2D-hexagonal chiral mesoporous silicas were formed by chiral, achiral, and racemic lipids. Our findings give important information for the understanding of the formation of chiral materials at the molecular level and will facilitate a more efficient and systematic approach to the generation of rationalized chiral libraries. 相似文献
9.
Guan Y Yu SH Antonietti M Böttcher C Faul CF 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(4):1305-1311
A new type of supramolecular polymer was prepared by ionic self-assembly (ISA) from two oppositely charged dyes; a perylenediimide and a copper-phthalocyanine derivative. Coulomb coupling stabilizes the whole structure, and a combination of charge-transfer interactions and discotic stacking facilitates the exclusive formation of one-dimensional polymeric chains. The supramolecular dye-polymers have a large association constant (2.4 x 10(7) L mol(-1)), high molecular weight, and high mechanical stability. The use of cryo-transmission electron microscopy (cryo-TEM) confirmed the existence of extended fibers of width 2.4 nm. Further image analysis revealed slight undulation and faint segmentation of the fibers, and density maxima were observed at a regular interval of 3.6 nm along the fiber axis. The fiber-like structure (and aggregate of fibers) is also found in the solid state, as shown by the results of mineralization contrasting experiments, atomic force microscopy (AFM), and X-ray analyses. A structural model is proposed, in which the structural subunits, arranged in a side-by-side conformation, form a stacked structure. 相似文献
10.
《Surface and interface analysis : SIA》2006,38(10):1372-1376
Calf thymus DNA (ct‐DNA) films were immobilized onto patterned silicon wafers through electrostatic self‐assembly technology and interacted with a novel dinuclear ruthenium (II) complex, [(bpy)2Ru(H2bpi)Ru(bpy)2](ClO4)4, which were demonstrated by using a confocal optical microscope. The morphology of the DNA film was measured by atomic force microscopy and the results show that the DNA strands have been folded into coiled conformations and aggregated into circles with diameters between 18 and 55 nm. The interaction process was also monitored by UV‐visible and fluorescence spectra and investigated by X‐ray photoelectron spectra. The results show that the Ru (II) complex interacts with ct‐DNA by the intercalative mode as it behaves in aqueous solutions. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
Newkome GR Cho TJ Moorefield CN Mohapatra PP Godínez LA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(6):1493-1500
Hexameric metallomacrocycles are a new class of ordered rigid-macromolecules which possess unique structural, electronic, and physical characteristics. Directed- and self-assembly methods for the construction of these stable bis(terpyridine)-based materials are investigated by using both Fe(II) and Ru(II) as the coordinating metals. These heterometallomacrocycles and their homocounterparts are structurally compared, and their attendant electrochemical properties are analyzed and evaluated. These studies demonstrate the potential to create stable, nanoscale, doughnut-shaped, molecular assemblies with envisioned ramifications for energy storage and release, as well as nanoscale molecular electronic and magnetic devices. 相似文献
12.
Allouche L Marquis A Lehn JM 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(28):7520-7525
The translational diffusion coefficients of various helicates have been determined by using NMR diffusion spectroscopy (Diffusion Ordered SpectroscopY, DOSY), in order to investigate the individual behaviour of the helicates according to their length (different nuclearities; 1-5 metals), to the nature of the metal involved (CuI or AgI), as well to their bulkiness due to the presence of substituents on the periphery of the assembly. Furthermore, the spectrum of a mixture of helicates belonging to the same series, but with different lengths and nuclearities, showed the signals of each component, with no observable cross-linking, confirming the self-recognition properties of the helicates. 相似文献
13.
Koeller S Bernardinelli G Bocquet B Piguet C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2003,9(5):1062-1074
The introduction of long semirigid spacers between the capping carbon atom of the tripod and the unsymmetrical tridentate binding units provides the novel, extended covalent podand tris-[2-[2-(6-diethylcarbamoylpyridin-2-yl)-1-ethyl-1H-benzoimidazol-5-yl-methoxy]ethyl]methane (L(15)). Reaction of L(15) with lanthanide(III) in acetonitrile produces stable podates [Ln(L(15))](3+) (Ln=La-Lu) in which three tridentate binding units are facially organized. These wrap around the nine-coordinate pseudo-tricapped trigonal-prismatic metal ions. The crystal structure of [La(L(15))](ClO(4))(3) (18, LaC(67)H(82)N(12)O(18)Cl(3), trigonal, R3c, Z=6) reveals the formation of a C(3)-symmetrical triple-helical podate. Two slightly different arrangements of the flexible ethylenoxy parts of the spacer are observed in the solid state in agreement with the formation of two conformational isomers (M:m) in a 4:1 ratio. A qualitative analysis of the aromatic diamagnetic anisotropies affecting the NMR signals of [Ln(L(15))](3+) (Ln=La, Y, Lu) in solution, combined with the quantitative determination of electron-induced relaxation in the paramagnetic complex [Nd(L(15))](3+), demonstrate that the solid state structure is maintained in solution. This leads to a mixture of two triple-helical conformers of similar stabilities and that do not interconvert on the NMR timescale between 243 and 343 K. Particular attention has been given to the structural programming of extended covalent tripods for facially organizing unsymmetrical tridentate binding units around Ln(III). Photophysical measurements show that L(15) efficiently protects the metallic coordination spheres and sensitizes Eu(III) and Tb(III) upon UV irradiation. 相似文献
14.
Dehaen G Eliseeva SV Kimpe K Laurent S Vander Elst L Muller RN Dehaen W Binnemans K Parac-Vogt TN 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(1):293-302
A ditopic chelating ligand (H(6)4) that bears catechol and diethylenetriamine-N,N,N',N',N'-pentaacetate (DTPA) has been designed and shown to specifically bind lanthanide(III) ions at the DTPA core ([Ln(H(2)4)(H(2)O)](-)) and further self-assemble with titanium(IV), thereby giving rise to the formation of a supramolecular metallostar complex with a lanthanide(III)-to-titanium(IV) ratio of 3:1, [(Ln4)(3)Ti(H(2)O)(3)](5-) (Ln=La, Eu, Gd). The efficacy of the metallostar complex as a potential bimodal optical/magnetic resonance imaging (MRI) agent has been evaluated. Nuclear magnetic relaxation dispersion (NMRD) measurements for the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex have demonstrated an enhanced r(1) relaxivity that corresponds to 36.9 s(-1) mM(-1) per metallostar molecule at 20 MHz and 310 K, which is a result of a decreased tumbling rate. The ability of the complex to bind to human serum albumin (HSA) was also examined by relaxometric measurements. In addition, upon UV irradiation the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex exhibits broad-band green emission in the range 400-750 nm with a maximum at 490 nm. Taking into account the high relaxivity and luminescence properties, the [(Gd4)(3)Ti(H(2)O)(3)](5-) complex is a good lead compound for the development of efficient bimodal contrast agents. 相似文献
15.
16.
Triple Helicates with Golden Strands: Self‐Assembly of M2Au6 Complexes from Gold(I) Metallaligands and Iron(II), Cobalt(II) or Zinc(II) Cations
下载免费PDF全文

Verónica Cámara Prof. Dr. Norberto Masciocchi Dr. Juan Gil‐Rubio Prof. Dr. José Vicente 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(5):1389-1402
Alkynyl gold(I) metallaligands [(AuC≡Cbpyl)2(μ‐diphosphine)] (bpyl=2,2′‐bipyridin‐5‐yl; diphosphine=Ph2P(CH2)nPPh2, [n=3 (LPr), 4 (LBu), 5 (LPent), 6 (LHex)], dppf (LFc), Binap (LBinap) and Diop (LDiop)) react with MX2 (M=Fe, Zn, X=ClO4; M=Co, X=BF4) to give triple helicates [M2(LR)3]X4. These complexes, except those containing the semirigid LBinap metallaligand, present similar hydrodynamic radii (determined by diffusion NMR spectroscopy measurements) and a similar pattern in the aromatic region of their 1H NMR spectra, which suggests that in solution they adopt a compact structure where the long and flexible organometallic strands are folded. The diastereoselectivity of the self‐assembly process was studied by using chiral metallaligands, and the absolute configuration of the iron(II) complexes with LBinap and LDiop was determined by circular dichroism spectroscopy (CD). Thus, (R)‐LBinap or (S)‐LBinap specifically induce the formation of (Δ,Δ)‐[Fe2((R)‐LBinap)3](ClO4)4 or (Λ,Λ)‐[Fe2((S)‐LBinap)3](ClO4)4, respectively, whereas (R,R)‐ or (S,S)‐LDiop give mixtures of the ΔΔ‐ and ΛΛ‐diastereomers. The ΔΔ helicate diastereomer is dominant in the reaction of FeII with (R,R)‐LDiop, whereas the ΛΛ isomer predominates in the analogous reaction with (S,S)‐LDiop. The photophysical properties of the new dinuclear alkynyl complexes and the helicates have been studied. The new metallaligands and the [Zn2(LR)3]4+ helicates present luminescence from [π→π*] excited states mainly located in the C≡Cbpyl units. 相似文献
17.
18.
Munch HK Heide ST Christensen NJ Hoeg-Jensen T Thulstrup PW Jensen KJ 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(26):7198-7204
Self-assembly of proteins mediated by metal ions is crucial in biological systems and a better understanding and novel strategies for its control are important. An abiotic metal ion ligand in a protein offers the prospect of control of the oligomeric state, if a selectivity over binding to the native side chains can be achieved. Insulin binds Zn(II) to form a hexamer, which is important for its storage in vivo and in drug formulations. We have re-engineered an insulin variant to control its self-assembly by covalent attachment of 2,2'-bipyridine. The use of Fe(II) provided chemoselective binding over the native site, forming a homotrimer in a reversible manner, which was easily followed by the characteristic color of the Fe(II) complex. This provided the first well-defined insulin trimer and the first insulin variant for which self-assembly can be followed visually. 相似文献
19.
Owen GR Stahl J Hampel F Gladysz JA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(1):73-87
Sequential reactions of trans-(C6F5)(p-tol3P)2Pt(C[triple chemical bond]C)3SiEt3 (PtC6SiEt3) with nBu4N+ F(-) (THF/methanol), PtCl, KPF6/tBuOK, and CuCl give trans,trans-[(C6F5){(p-tol3P)2}Pt(C[triple chemical bond]C)3Pt{(Pp-tol3)2}(C6F5)] (PtC6Pt) in 95 % yield on multigram scales. Reactions of PtC6Pt and Ar2P(CH2)mPAr2 afford substitution products trans,trans-[(C6F5){(Ar2P(CH2)mPAr2)}Pt(C[triple chemical bond]C)3Pt{(Ar2P(CH2)mPAr2)}(C6F5)] (PtC6Pt-m/Ar; m/Ar=8/p-tol, 78 %; 10/Ph, 82 %; 11/Ph, 69 %; 12/Ph, 57 %; 14/p-tol, 57 %; 14/p-C6H4-tBu, 71 %), in which the diphosphines span the square planar platinum endgroups. An analogous reaction with PEt3 gives a tetrakis PEt3 complex Pt'C6Pt' (72 %). The crystal structures of PtC6Pt, Pt'C6Pt', PtC6Pt-10/Ph, PtC6Pt-11/Ph, and PtC6Pt-14/p-tol or solvates thereof are compared. In PtC6Pt, the endgroups can avoid van der Waals contact, and define angles of 0 degrees . In PtC6Pt-14/p-tol, the sp3 chains twist around the sp chain in a chiral double-helical motif, with an endgroup/endgroup angle of 189 degrees . The sp3 chains are too short to adopt analogous conformations in the other complexes, but laterally shield the sp chain. NMR spectroscopy shows that the helical enantiomers of PtC6Pt-14/p-tol rapidly interconvert in solution at low temperature. A crystal structure of PtC4Pt shows endgroups that are in van der Waals contact and define an angle of 41 degrees . Reactions with Ar2P(CH2)8PAr2 give PtC4Pt-8/Ar (Ar=Ph, 53 %; p-tol, 87 %). Low-temperature NMR spectroscopy establish non-helical chiral conformations. Electrochemical oxidations of the diplatinum complexes are analyzed, the reversibilities of which decrease with increasing sp chain length. 相似文献