首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ta2O5绝缘层厚度对ZnO基薄膜晶体管器件性能的影响   总被引:4,自引:3,他引:1  
报道了不同厚度TaO5栅绝缘层对氧化锌薄膜晶体管器件性能的影响.在室温下用射频磁控溅射分别制备了100,85,60,40 nm厚度的Ta2O5薄膜作为绝缘层的一组底栅氧化锌薄膜晶体管器件.从实验结果可以得出如下结论:随着Ta2O5栅绝缘层厚度的增加,相应器件的场效应迁移率下降,其数值分别是50.5,59.3,63.8,...  相似文献   

2.
王伟  高健  张婷  张露  李娜  杨晓  岳工舒 《计算物理》2015,32(1):115-126
采用量子动力学模型研究单材料和三材料的石墨烯纳米条带场效应管(GNRFETs)在不同掺杂情况下的弹道输运特性,模型基于非平衡格林函数方程(NEGF)以及自洽的泊松方程的量子数值解.结果证明:三材料线性掺杂的石墨烯纳米条带场效应管(TL-GNRFET)不仅能够有效地抑制短沟道效应(SCE)和漏极势垒降低效应(DIBL),而且相对于其它几种结构而言,它有更好的亚阈值斜率以及更高的开关电流比.另外,还研究了非对称栅结构对石墨烯场效应管的影响,结果表明,当上栅和下栅同时向源端移动的时候,可以改善器件的电流开关比.  相似文献   

3.
On the basis of density functional theory calculations, we have systematically investigated the electronic properties of armchair-edge graphene nanoribbons (GNRs) doped with boron (B) and nitrogen (N) atoms. B (N) atoms could effectively introduce holes (electrons) to GNRs and the system exhibits p- (n-) type semiconducting behavior after B (N) doping. According to the electronic structure calculations, Z-shape GNR-based field effect transistors (FETs) is constructed by selective doping with B or N atoms. Using first-principles quantum transport calculations, we demonstrate that the B-doped p-type GNR-FETs can exhibit high levels of performance, with high ON/OFF ratios and low subthreshold swing. Furthermore, the performance parameters of GNR-FETs could be controlled by the p-type semiconducting channel length.  相似文献   

4.
Doping of semiconductor is necessary for various device applications. Exploiting chemistry at its reactive edges was shown to be an effective way to dope an atomically thin graphene nanoribbon (GNR) for realizing new devices in recent experiments. The carrier mobility limited by edge doping is studied as a function of the GNR width, doping density, and carrier density by using ab initio density functional and parameterized tight binding simulations combined with the non-equilibrium Green's function formalism for quantum transport. The results indicate that for GNRs wider than about 4 nm, the mobility scales approximately linearly with the GNR width, inversely proportional to the edge doping concentration and decreases for an increasing carrier density. For narrower GNRs, dependence of the mobility on the GNR width and carrier density can be qualitatively different.  相似文献   

5.
We present real-time transmission electron microscopy of nanogap formation by feedback controlled electromigration that reveals a remarkable degree of crystalline order. Crystal facets appear during feedback controlled electromigration indicating a layer-by-layer, highly reproducible electromigration process avoiding thermal runaway and melting. These measurements provide insight into the electromigration induced failure mechanism in sub-20 nm size interconnects, indicating that the current density at failure increases as the width decreases to approximately 1 nm.  相似文献   

6.
This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5~wt% to 2~wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2~wt% can reach 5.78× 10^-3~cm2/Vs which is higher by a factor of 13 than that with 0.5~wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09~cm2/Vs by thermal annealing at 150~℃, and the value of on/off current ratio can reach 10^4.  相似文献   

7.
Two-level fluctuations of the magnetization state of pseudo-spin-valve pillars Co(10 nm)/Cu(10 nm)/Co(30 nm) embedded in electrodeposited nanowires ( approximately 40 nm in diameter, 6000 nm in length) are triggered by spin-polarized currents of 10(7) A/cm(2) at room temperature. The statistical properties of the residence times in the parallel and antiparallel magnetization states reveal two effects with qualitatively different dependences on current intensity. The current appears to have the effect of a field determined as the bias field required to equalize these times. The bias field changes sign when the current polarity is reversed. At this field, the effect of a current density of 10(7) A/cm(2) is to lower the mean time for switching down to the microsecond range. This effect is independent of the sign of the current and is interpreted in terms of an effective temperature for the magnetization.  相似文献   

8.
《Current Applied Physics》2018,18(3):340-344
In this paper, we investigate the performance of ring oscillators composed of gate-all-around (GAA) silicon nanowire (NW) field-effect transistors (FETs) with four different numbers of NW channels, for sub-10-nm logic applications. Our simulations reveal that ring oscillators with double, triple, and quadruple NW channels exhibit improvements of up to 50%, 85%, and 97%, respectively, in the oscillation frequencies (fosc), compared to a ring oscillator with a single NW channel, due to the large drive current, in spite of the increased intrinsic capacitance of a given device. Moreover, our work shows that the fosc improvement ratio of the ring oscillators becomes saturated with triple NW channels with additional load capacitances of 0.1 fF and 0.01 fF, which are similar to, or less than the intrinsic device capacitance (∼0.1 fF). Thus, our study provides an insight for determining the capacitive load and optimal number of NW channels, for device development and circuit design of GAA NW FETs.  相似文献   

9.
采用原子层淀积(ALD)方法,制备了Al2O3为栅介质的高性能AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT)。在栅压为-20 V时,MOS-HEMT的栅漏电比Schottky-gate HEMT的栅漏电低4个数量级以上。在栅压为+2 V时,Schottky-gate HEMT的栅漏电为191μA;在栅压为+20 V时,MOS-HEMT的栅漏电仅为23.6 nA,比同样尺寸的Schottky-gate HEMT的栅漏电低将近7个数量级。AlGaN/GaN MOS-HEMT的栅压摆幅达到了±20 V。在栅压Vgs=0 V时, MOS-HEMT的饱和电流密度达到了646 mA/mm,相比Schottky-gate HEMT的饱和电流密度(277 mA/mm)提高了133%。栅漏间距为10μm的AlGaN/GaN MOS-HEMT器件在栅压为+3 V时的最大饱和输出电流达到680 mA/mm,特征导通电阻为1.47 mΩ·cm2。Schottky-gate HEMT的开启与关断电流比仅为105,MOS-HEMT的开启与关断电流比超过了109,超出了Schottky-gate HEMT器件4个数量级,原因是栅漏电的降低提高了MOS-HEMT的开启与关断电流比。在Vgs=-14 V时,栅漏间距为10μm的AlGaN/GaN MOS-HEMT的关断击穿电压为640 V,关断泄露电流为27μA/mm。  相似文献   

10.
We demonstrate apertureless near-field microscopy of single molecules at sub-10 nm resolution. With a novel phase filter, near-field images of single organic fluorophores were obtained with approximately sixfold improvement in the signal-to-noise ratio. The improvement allowed pairs of molecules separated by approximately 15 nm to be reliably and repeatedly resolved, thus demonstrating the first true Rayleigh resolution test for near-field images of single molecules. The potential of this technique for biological applications was demonstrated with an experiment that measured the helical rise of A-form DNA.  相似文献   

11.
Over the past decade, focused electron beam-induced deposition has become a mature necessary part of the tool box engineers and scientists. This review presents the current state of the art in sub-10 nm focused electron beam deposition and describes the dominant mechanisms that have been found so far for this regime. Several questions regarding patterning at the highest resolution are addressed. What do our findings mean for using sub-10 nm focused electron beam deposition for industrial applications? And which fundamental issues remain to be solved? The overview shows that low-energy secondary electrons dominate the deposition process. As a result, the highest obtainable spatial resolution (averaged over many deposits) is limited by the mean free path of those electrons. Therefore, the only route to improve the resolution beyond the current appears to be using complexes that are sensitive to the high-energy electrons in the incident beam, rather than to the secondaries. Focused electron beam-induced deposition is compared to related techniques. It is on par with resist-based sub-10 nm electron beam lithography, showing similar spatial resolutions at similar electron doses. Regarding ion beam lithography, there are several distinguishing issues. Sub-10 nm writing has yet to be demonstrated for ion deposition, and although the deposition rate is relatively low when writing with electrons, electrons do not induce damage to the sample. The latter is a crucial advantage for focused electron beam-induced deposition. Finally, the main challenges regarding the applicability of sub-10 nm focused electron beam-induced deposition are discussed.  相似文献   

12.
石墨烯在未来微电子学领域有极大的应用前景,但是其零带隙的特点阻碍了石墨烯在半导体领域的应用.研究发现,打开室温下可用的石墨烯带隙所需要的石墨烯纳米结构尺度在10 nm以下,这一尺度的纳米结构一方面制备比较困难,另一方面器件可承载的驱动电流较小.因此,如何实现亚10 nm石墨烯纳米结构的有效加工以及如何在有效调控带隙的基础上增大石墨烯器件可承载的驱动电流,还需要进一步的研究.本文首先研究了利用聚甲基丙烯酸甲酯/铬(PMMA/Cr)双层结构工艺,通过刻蚀时间的控制,利用电子束曝光及刻蚀工艺实现了亚10 nm石墨烯纳米结构的可控制备.同时设计并制备了单排孔石墨烯条带结构,该结构打开的带隙远大于相同特征宽度石墨烯纳米带所能打开带隙的大小.该结构在有效打开石墨烯带隙的同时,增加了石墨烯纳米结构可以承载的驱动电流,有利于石墨烯在未来微电子领域的应用.  相似文献   

13.
The anisotropic shape transformation of gold nanorods (GNRs) with H2O2 was observed in the presence of “cethyl trimethylammonium bromide” (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H2O2: Au0 → Au+, Au0 + Aun+ → 2Au3+, n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H2O2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H2O2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br ions.  相似文献   

14.
Haijun Shen 《Molecular physics》2014,112(19):2614-2620
Molecular dynamics method was used to simulate the twists of four GNRs (graphene nanoribbons), two AGNRs (armchair GNRs), and two ZGNRs (zigzag GNRs). Thermal conductivity of the length-fixing GNRs under torsion and at high temperature was calculated. It is found that the ZGNRs have better torsional rigidity than the AGNRs; under the torsional deformation of 34.2°/nm local buckling occurs in the length-fixing GNRs, and under the deformation of 22.8°/nm overall buckling occurs in the ones with free-length. In the range of investigated twist-angle and temperature, the thermal conductivity of the length-fixing GNRs decreases with the increase of torsional deformation and temperature. The wider GNRs have better anti-torsion capability and thermal conductivity.  相似文献   

15.
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5-3.0 eV for ribbons of width 2.4-0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.  相似文献   

16.
The elliptic flow v_{2} and the ratio of the shear viscosity over the entropy density, eta/s, of gluon matter are calculated from the perturbative QCD (pQCD) based parton cascade Boltzmann approach of multiparton scatterings. For Au+Au collisions at sqrt[s]=200A GeV the gluon plasma generates large v_{2} values measured at the BNL Relativistic Heavy Ion Collider. Standard pQCD yields eta/s approximately 0.08-0.15 as small as the lower bound found from the anti-de Sitter/conformal field theory conjecture.  相似文献   

17.
王水才 《物理》1999,28(3):178-181
报道了一种新的交叉锁模多波长钛宝石飞秒激光器的设计原理。该激光器能够同步产生两列或三列飞秒光脉冲。持续期短到25fs的双波长脉冲调谐在755-848nm之间,同步精度约10fs。  相似文献   

18.
《中国物理 B》2021,30(7):78503-078503
The various advantages of extended-source(ES), broken gate(BG), and hetero-gate-dielectric(HGD) technology are blended together for the proposed tunnel field-effect transistor(ESBG TFET) in order to enhance the direct-current and analog/radio-frequency performance. The source of the ESBG TFET is extended into channel for the purpose of increasing the point and line tunneling in the device at the tunneling junction, and then, the on-state current for the ESBG TFET increases. The influence of the source region length on the direct-current and radio-frequency performance parameters of the ESBG TFET is analyzed in detail. The results show that the proposed TFET exhibits a high on-state current to off-state current ratio of 1013, large transconductance of 1200 μS/μm, high cut-off frequency of 72.8 GHz, and high gain bandwidth product of 14.3 GHz. Apart from these parameters, the ESBG TFET also demonstrates high linearity distortion parameters in terms of the second-and third-order voltage intercept points, the third-order input interception point, and the third-order intermodulation distortion. Therefore, the ESBG TFET greatly promotes the application potential of conventional TFETs.  相似文献   

19.
Relativistic viscous hydrodynamic fits to Brookhaven Relativistic Heavy Ion Collider data on the centrality dependence of multiplicity, transverse, and elliptic flow for square root s = 200 GeV Au+Au collisions are presented. For standard (Glauber-type) initial conditions, while data on the integrated elliptic flow coefficient v(2) are consistent with a ratio of viscosity over entropy density up to eta/s approximately 0.16, data on minimum bias v(2) seem to favor a much smaller viscosity over entropy ratio, below the bound from the anti-de Sitter conformal field theory conjecture. Some caveats on this result are discussed.  相似文献   

20.
Yue Li 《中国物理 B》2022,31(9):97307-097307
Ferroelectric (FE) HfZrO/Al$_{2}$O$_{3}$ gate stack AlGaN/GaN metal-FE-semiconductor heterostructure high-electron mobility transistors (MFSHEMTs) with varying Al$_{x}$Ga$_{1-x}$N barrier thickness and Al composition are investigated and compared by TCAD simulation with non-FE HfO$_{2}$/Al$_{2}$O$_{3}$ gate stack metal-insulator-semiconductor heterostructure high-electron mobility transistors (MISHEMTs). Results show that the decrease of the two-dimensional electron gas (2DEG) density with decreasing AlGaN barrier thickness is more effectively suppressed in MFSHEMTs than that in MISHEMTs due to the enhanced FE polarization switching efficiency. The electrical characteristics of MFSHEMTs, including transconductance, subthreshold swing, and on-state current, effectively improve with decreasing AlGaN thickness in MFSHEMTs. High Al composition in AlGaN barrier layers that are under 3-nm thickness plays a great role in enhancing the 2DEG density and FE polarization in MFSHEMTs, improving the transconductance and the on-state current. The subthreshold swing and threshold voltage can be reduced by decreasing the AlGaN thickness and Al composition in MFSHEMTs, affording favorable conditions for further enhancing the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号