首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pronounced conductance due to electrons experiencing Andreev reflection from a superconducting condensate has been observed in superconductor (aluminum)–insulator (aluminum oxide)–normal metal (copper) tunnel junctions at low voltages, along with single-electron tunneling. It has been discovered experimentally that the collective current is suppressed in the magnetic field parallel to the tunnel junction plane and the Andreev conductance decreases nearly twofold in a field of ~20–30 mT.  相似文献   

2.
Ju Peng 《Physics letters. A》2008,372(21):3878-3881
We theoretically report a nonlocal Andreev reflection in an Aharonov-Bohm interferometer, which is a three-terminal normal metal/superconductor (NS) mesoscopic hybrid system. It is found that this nonlocal Andreev reflection is sensitive to the systematic parameters, such as the bias voltages, the quantum dot levels, and the external magnetic flux. If we set the chemical potential of one normal metal lead equal to zero, the electronic current in the lead results from two competing processes: the quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero electronic current signals unambiguously the existence of this nonlocal Andreev reflection.  相似文献   

3.
We investigate transport through hybrid structures consisting of two normal metal leads connected via tunnel barriers to one common superconducting electrode. We find clear evidence for the occurrence of nonlocal Andreev reflection and elastic cotunneling through a superconductor when the separation of the tunnel barrier is comparable to the superconducting coherence length. The probability of the two processes is energy dependent, with elastic cotunneling dominating at low energy and nonlocal Andreev reflection at higher energies. The energy scale of the crossover is found to be the Thouless energy of the superconductor, which indicates the phase coherence of the processes. Our results are relevant for the realization of recently proposed entangler devices.  相似文献   

4.
We provide a direct proof of two-electron Andreev transitions in a superconductor-normal-metal tunnel junction by detecting them in a real-time electron counting experiment. Our results are consistent with ballistic Andreev transport with an order of magnitude higher rate than expected for a uniform barrier, suggesting that only part of the interface is effectively contributing to the transport. These findings are quantitatively supported by our direct current measurements in single-electron transistors with similar tunnel barriers.  相似文献   

5.
彭菊  郁华玲  王之国 《中国物理 B》2009,18(12):5485-5490
This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov--Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.  相似文献   

6.
Taking into account the effects of quantum interference and interface scattering, combining the electron current with hole current contribution to tunnel current,we study the coherent quantum transport in normal-metal/d-wave superconductor/normal-metal (NM/d-wave SC/NM) double tunnel junctions by using extended Blonder-Tinkham-Klapwijk (BTK) approach. It is shown that all quasiparticle transport coefficients and conductance spectrum exhibit oscillating behavior with the energy, in which periodic vanishing of Andreev reflection (AR) above superconducting gap is found.In tunnel limit for the interface scattering strength taken very large, there are a series of bound states of quasiparticles formed in SC.  相似文献   

7.
Andreev reflection(AR) refers to the electron-hole conversion at the normal metal-superconductor interface. In a threedimensional metal with a spherical Fermi surface, retro(specular) AR can occur with the sign reversal of all three(a single)components of particle velocity. Here, we predict a novel type of AR with the inversion of two velocity components, dubbed"anomalous Andreev reflection"(AAR), which can be realized in a class of materials with a torus-shaped Fermi surface, such as doped nodal line semimetals. For its toroidal circle perpendicular to the interface, the Fermi torus doubles the AR channels and generates multiple AR processes. In particular, the AAR and retro AR are found to dominate electron transport in the light and heavy doping regimes, respectively. We show that the AAR visibly manifests itself as a ridge structure in the spatially resolved nonlocal conductance, in contrast to the peak structure for the retro AR. Our work opens a new avenue for the AR spectroscopy and offers a clear transport signature of the torus-shaped Fermi surface.  相似文献   

8.
The flat voltage noise component of current biased, high-transparency Nb/AlOx/Nb superconducting tunnel junctions has been investigated at frequencies up to 70 kHz. Several aspects of the analyzed phenomena suggest the presence of current noise effects induced by the discreteness of the charge carriers. At subgap voltages, where excess currents occur, a behavior coherent with a multiple Andreev reflection-assisted transport through the tunnel barrier has been found. However, the measured charge values exceed any theoretical prediction.  相似文献   

9.
Taking into account the effects of quantum interference and interface scattering, combining the electron current with hole current contribution to tunnel current, we study the coherent quantum transport in normal-metal/d-wave superconductor/ normal-metal (NM/d-wave SC/NM) double tunnel junctions by using extended Blonder-Tinkham-Klapwijk (BTK) approach. It is shown that all quasiparticle transport coefficients and conductance spectrum exhibit oscillating behavior with the energy, in which periodic vanishing of Andreev reflection (AR) above superconducting gap is found. In tunnel limit for the interface scattering strength taken very large, there are a series of bound states of quasiparticles formed in SC.  相似文献   

10.
We study the stationary Josephson effect in a ballistic superconductor/ferromagnet/superconductor junction for arbitrarily large spin polarizations. Due to the exchange interaction in the ferromagnet, the Andreev reflection is incomplete. We describe how this effect modifies the Josephson current in the crossover from a superconductor/normal metal/superconductor junction to a superconductor/half metal/superconductor junction.  相似文献   

11.
We study the nonlinear cotunneling current through a spinful quantum dot contacted by two superconducting leads. Applying a general nonequilibrium Green function formalism to an effective Kondo model, we study the rich variation in the IV characteristics with varying asymmetry in the tunnel coupling to source and drain electrodes. The current is found to be carried, respectively, by multiple Andreev reflections in the symmetric limit, and by spin-induced Yu-Shiba-Rusinov bound states in the strongly asymmetric limit. The interplay between these two mechanisms leads to qualitatively different IV characteristics in the crossover regime of intermediate symmetry, consistent with recent experimental observations of negative differential conductance and repositioned conductance peaks in subgap cotunneling spectroscopy.  相似文献   

12.
The dc Josephson effect in a superconducting quantum point contact, where supercurrent flows through a small number of channels, is reviewed. The central role of Andreev levels is emphasized which carry the whole supercurrent in short symmetric Josephson junctions including tunnel junctions. A simple intuitive view of the dc Josephson effect in a quantum point contact is given in terms of multiple Andreev reflections. The quantization of the critical current in superconducting quantum point contacts is briefly discussed.  相似文献   

13.
In highly resistive superconducting tunnel junctions, excess subgap current is usually observed and is often attributed to microscopic pinholes in the tunnel barrier. We have studied the subgap current in superconductor-insulator-superconductor (SIS) and superconductor-insulator-normal-metal (SIN) junctions. In Al/AlO(x)/Al junctions, we observed a decrease of 2 orders of magnitude in the current upon the transition from the SIS to the SIN regime, where it then matched theory. In Al/AlO(x)/Cu junctions, we also observed generic features of coherent diffusive Andreev transport in a junction with a homogenous barrier. We use the quasiclassical Keldysh-Green function theory to quantify single- and two-particle tunneling and find good agreement with experiment over 2 orders of magnitude in transparency. We argue that our observations rule out pinholes as the origin of the excess current.  相似文献   

14.
We discuss how to control dc Josephson current by influencing the structure and nonequilibrium population of Andreev levels via external electrostatic gates, current injection and electromagnetic radiation. In particular we will consider the ‘giant’ Josephson critical current in ‘long’ SIS tunnel junctions and the regular and anomalous nonequilibrium Josepson currents in three terminal SNS junctions. We will briefly discuss applications to the Josephson field effect transistor (JOFET) and to the newly invented Josephson interference transistor (JOINT).  相似文献   

15.
《Physics letters. A》2014,378(30-31):2256-2262
Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports.  相似文献   

16.
彭菊  郁华玲  左芬 《中国物理 B》2010,19(12):127402-127402
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot(QD) ring,which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot.It is found that the electronic current and spin current are sensitive to the systematic parameters.The interdot spin-flip term does not play a leading role in causing electronic and spin currents.Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current.Moreover,the spin-orbital interaction suppresses the nonlocal Andreev reflection,so we cannot obtain the pure spin current.  相似文献   

17.
We measured shot noise and submillimeter-wave response in a superconducting NbN tunnel junction that had a subharmonic gap structure on the current-voltage (I-V) curve. We found that the observed effective charge, defined from the noise-current ratio, tends to a steplike function of voltage. In the presence of submillimeter-wave radiation of frequency v, novel step structures spaced by hv/2e below and above the half-gap voltage clearly appeared on the I-V curve, overlapping the ordinary photon-assisted tunneling steps spaced by hv/e. Observation of these features provides clear evidence that coherent multiple Andreev reflection processes occur in the NbN tunnel junction with low barrier transparency.  相似文献   

18.
We propose a new approach of smearing origins of a zero-bias conductance peak (ZBCP) in high-Tc superconductor tunnel junctions through the analysis based on the circuit theory for a d-wave pairing symmetry. The circuit theory has been recently developed from conventional superconductors to unconventional superconductors. The ZBCP frequently appears in line shapes for this theory, in which the total resistance was constructed by taking account of the effects between a d-wave superconductor and a diffusive normal metal (DN) at a junction interface, including the midgap Andreev resonant states (MARS), the coherent Andreev reflection (CAR) and the proximity effect. Therefore, we have analyzed experimental spectra with the ZBCP of Ag-SiO-Bi2Sr2CaCu2O8+δ (Bi-2212) planar tunnel junctions for the {110}-oriented direction by using a simplified formula of the circuit theory for d-wave superconductors. The fitting results reveal that the spectral features of the ZBCP are well explained by the circuit theory not only excluding the Dynes's broadening factor but also considering only the MARS and the DN resistance. Thus, the ZBCP behaviors are understood to be consistent with those of recent studies on the circuit theory extended to the systems containing d-wave superconductor tunnel junctions.  相似文献   

19.
We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.  相似文献   

20.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号