首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene films are grown in open-atmosphere on metal substrates using a multiple inverse-diffusion flame burner with methane as fuel. Substrate material (i.e. copper, nickel, cobalt, iron, and copper–nickel alloy), along with its temperature and hydrogen treatment, strongly impacts the quality and uniformity of the graphene films. The growth of few-layer graphene (FLG) occurs in the temperature range 750–950 °C for copper and 600–850 °C for nickel and cobalt. For iron, the growth of graphene is not exclusively observed. The variation of graphene quality for different substrates is believed to be due primarily to the difference in carbon solubility between the metals.  相似文献   

2.

A method of obtaining graphene oxide from Hummers-modified natural flake graphite with subsequent synthesis of reduced graphene and few-layer graphite has been suggested. The structure and electrical performance of the synthesized material have been studied. The feasibility of making a high-capacitance flexible electrode using polyethylene substrates covered by a conductive ink has been demonstrated.

  相似文献   

3.
As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical–statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.  相似文献   

4.
M Abdulkhadar  K C George 《Pramana》1991,37(4):321-326
A study of aggregation of sulphur particles in colloidal suspension of sulphur in water-methanol mixture using TEM and electron diffraction is reported. From the micrographs the aggregates formed have been found to be random and tenuous indicating a fractal structure. The electron diffraction patterns of the aggregates are used to study the mechanism of diffusion and reaction limited aggregation.  相似文献   

5.
This paper presents a review of light scattering results on static and dynamic properties of ordered colloidal suspensions of charged polystyrene particles and fractal colloidal aggregates. Our studies on static structure factor,S(Q), of ordered monodisperse colloidal suspensions and binary mixtures of particles with different particle diameters, measured by angle-resolved Rayleigh scattering will be discussed. This will include determination of bulk modulus using gravitational compression and observation of colloidal glass (inferred from splitting of the second peak inS(Q)). Dynamic light scattering, with real time analysis of scattered intensity fluctuations, is used to get information about Brownian dynamics of the particles. Recent advances in the field of light scattering from colloidal aggregates which show fractal geometry will also be discussed.  相似文献   

6.
We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.  相似文献   

7.
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons. Furthermore, it maybe indicate a so-called pressure-thermal effect in nanomaterials.  相似文献   

8.
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations.It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons.This improvement can reach 37.5%in the low temperature region.The pressure dependence of thermal conductivity is also investigated for diferent length,width and thickness of few-layer graphene.Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons.Furthermore,it maybe indicate a so-called pressure-thermal efect in nanomaterials.  相似文献   

9.
<正>Graphene films are deposited on copper(Cu) and aluminum(Al) substrates,respectively,by using a microwave plasma chemical vapour deposition technique.Furthermore,these graphene films are characterized by a field emission type scanning electron microscope(FE-SEM),Raman spectra,and field emission(FE) I-V measurements.It is found that the surface morphologies of the films deposited on Cu and Al substrates are different:the field emission property of graphene film deposited on the Cu substrate is better than that on the Al substrate,and the lowest turn-on field of 2.4 V/μm is obtained for graphene film deposited on the Cu substrate.The macroscopic areas of the graphene samples are all above 400 mm~2.  相似文献   

10.
Colloidal aggregation with sedimentation: concentration effects   总被引:1,自引:0,他引:1  
The results of computer models for colloidal aggregation, that consider both Brownian motion and gravitational drift experienced by the colloidal particles and clusters, are extended to include concentrations spanning three orders of magnitude. In previous publications and for a high colloidal concentration, it was obtained that the aggregation crosses over from diffusion-limited colloidal aggregation (DLCA) to another regime with a higher cluster fractal dimension and a speeding up followed by a slowing down of the aggregation rate. In the present work we show, as the concentration is decreased, that we can still cross over to a similar regime during the course of the aggregation, as long as the height of the sample is increased accordingly. Among the differences between the mentioned new regimes for a high and a low colloidal concentration, the cluster fractal dimension is higher for the high concentration case and lowers its value as the concentration is decreased, presumably reaching for low enough concentrations a fixed value above the DLCA value. It is also obtained the fractal dimension of the sediments, arising from the settling clusters that reach the bottom and continue a 2D-like diffusive motion and aggregation, on the floor of the container. For these clusters we now see two and sometimes three regimes, depending on concentration and sedimentation strength, with their corresponding fractal dimensions. The first two coming from the crossover already mentioned, that took place in the bulk of the sample before the cluster deposition, while the third arises from the two-dimensional aggregation on the floor of the container. For these bottom clusters we also obtain their dynamical behavior and aggregation rate.Received: 7 January 2004, Published online: 25 March 2004PACS: 61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates) - 82.70.Dd Colloids - 05.10.Ln Monte Carlo methods  相似文献   

11.
This paper describes a facile strategy for fabricating arrays of two- and three-dimensional gold nanostructures using PDMS-infiltrated polystyrene (PS) colloidal crystals. PDMS molding of colloidal crystal, gold vapor deposition, and subsequent calcination of PS produced gold thin layers over hexagonal PDMS microwell arrays with hemispherical air-voids of approximately 140 nm on glass substrates. Vapor deposition of perfluoroalkylsilane thin layers improved the thermal stability of the colloidal template over 100 °C, providing a route to preparation of hollow architectures with gold thin layers supported by PDMS nanostructures. Surface modification of the PDMS using poly(allylamine hydrochloride) induced two-dimensional colloidal crystals of PS and PMMA spheres through electrostatic interactions. Particle aggregation of 13 nm gold nanoparticles in the PDMS microwells demonstrated a surface plasmon resonance band red-shifted to 810 nm, in comparison with that on the flat surface at 720 nm.  相似文献   

12.
基于少数层石墨烯可饱和吸收的锁模光纤激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
冯德军  黄文育  姜守振  季伟  贾东方 《物理学报》2013,62(5):54202-054202
本文利用化学气相沉积法高温分解甲烷在铜箔上制得单层石墨烯薄膜, 测量了石墨烯的拉曼光谱. 将石墨烯薄膜逐层转移到光纤跳线的氧化锆插芯端面上做成可饱和吸收材料, 实验研究了环形腔掺铒光纤脉冲激光器的输出特性, 获得了峰值波长为1560.1 nm, 3 dB带宽为0.27 nm, 重复频率为7.69 MHz, 脉冲宽度为58.8 ps 的锁模脉冲序列. 时间带宽积为1.98, 表明脉冲出现了啁啾. 最后, 通过改变两个光纤活动接头之间的空气腔的长度, 激光波长实现了4 nm的调谐. 关键词: 光纤激光器 石墨烯 锁模  相似文献   

13.
The films of few-layer graphene are formed through laser exfoliation of a highly ordered pyrolytic graphite(HOPG), without a catalytic layer for the growth process. The femtosecond(fs) laser exfoliation process is investigated at different laser fluences and substrate temperature. For fs laser exfoliation of HOPG, the few-layer graphene is obtained at 473 K under an optimal laser fluence. The formation of few-layer graphene is explained by removal of intact graphite sheets occurred by an optimal laser fluence ablation. The new insights may facilitate the controllable synthesis of large area few-layer graphene.  相似文献   

14.
氧化钼分形生长的核晶凝聚模型   总被引:2,自引:0,他引:2       下载免费PDF全文
张济忠 《物理学报》1992,41(8):1302-1307
本文报道氧化钼在远离平衡的无序系统中气固相变过程。实验结果除了薄片状氧化钼晶体外,还形成了由晶须凝聚组成的各种形态的二维分形结构。对实验所得的分形结构,用非平衡态和不可逆过程的热力学理论进行了讨论,并提出核晶凝聚模型。 关键词:  相似文献   

15.
水分子凝胶中有机凝胶因子聚集体的分形结构研究   总被引:1,自引:1,他引:0       下载免费PDF全文
王理  黎坚  杨亚江 《物理学报》2004,53(1):160-164
水分子凝胶是一种新型软凝聚体系.是凝胶因子在很低的浓度下在水中聚集、自组装,使水凝胶化形成的凝聚体系.透射电镜(TEM)表明凝胶因子在水中聚集、自组装成细纤维状结构.通过对TEM照片进行数字化处理,采用Sandbox法和密度-密度相关函数法计算的结果表明凝胶因子在聚集组装过程中具有典型的分形特征.根据C++程序计算出分形维数D=1.814—1.977.以分形理论对凝胶因子的聚集过程以及由此形成的水分子凝聚体系的分形特征进行了讨论.利用小角x射线散射(SAXS)研究进一步表明,凝聚体系的分形结构存在于尺度α 关键词: 分形 凝胶因子 水分子凝聚体系 透射电镜(TEM) 小角x射线散射(SAXS)  相似文献   

16.
This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G′ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.  相似文献   

17.
A computer model for colloidal aggregation is presented that considers both the Brownian motion and the gravitational drift experienced by the colloidal particles and clusters. It is shown that the aggregation crosses over from diffusion-limited aggregation to another type with a higher cluster fractal dimension, a speeding up followed by a slowing down of the aggregation rate, an algebraically decaying cluster size distribution, and a higher concentration required for gelation. Although these findings are in accordance with the experimental results, some interpretations are different.  相似文献   

18.
利用等离子增强化学气相沉积方法,在铜粉表面原位生长了站立石墨烯,用于制备石墨烯强化铜基复合材料.研究表明,石墨烯包覆在铜粉外表面,微观尺度实现了两者的均匀混合;生长的初期阶段,碳、氢等离子基团可将铜粉表面的氧化层还原,有助于铜粉-石墨烯之间形成良好的界面;石墨烯的成核是一个生长/刻蚀相互竞争的过程,其尺寸可受制备温度调控.利用放电等离子烧结方法将粉末压制成型,测试结果显示,添加石墨烯样品的电阻率降低了一个数量级,维氏硬度和屈服强度分别提高了15.6%和28.8%.  相似文献   

19.
Production of graphene by thermal annealing on copper foil substrates has been studied with different sources of carbon. The three carbon sources include humic acid derived from leonardite, graphenol, and activated charcoal. Hexagonal single crystalline graphene has been synthesized over the copper foil substrates by thermal annealing of humic acid, derived from leonardite, in argon and hydrogen atmosphere (Ar/H2=20). The annealing temperature was varied between 1050 °C and 1100 °C at atmospheric pressure. Samples have been investigated using scanning electron microscope (SEM) and Raman spectroscopy. At lower temperatures the thermal annealing of the three carbon sources used in this study produces pristine graphene nanosheets which cover almost the whole substrate. However when the annealing temperature has been increased up to 1100 °C, hexagonal single crystalline graphene have been observed only in the case of the humic acid. Raman analysis showed the existence of 2D band around 2690 cm−1.  相似文献   

20.
We fabricated high-mobility field-effect transistors based on epitaxial graphene synthesized by vacuum graphitization of both the Si- and C-faces of SiC. Room-temperature field-effect mobilities >4000 cm2/V s for both electrons and holes were achieved, although with wide distributions. By using a high-k gate dielectric, we were able to measure the transistor characteristics in a wide carrier density range, where the mobility is seen to decrease as the carrier density increases. We formulate a simple semiclassical model of electrical transport in graphene, and explain the sublinear dependence of conductivity on carrier density from the view point of the few-layer graphene energy band structure. Our analysis reveals important differences between the few-layer graphene energy dispersions on the SiC Si- and C-faces, providing the first evidence based on electrical device characteristics for the theoretically proposed energy dispersion difference between graphene synthesized on these two faces of SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号