首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we derive an explicit formula for a kinetic relation governing the motion of a phase boundary in a bilinear thermoelastic material capable of undergoing solid-solid phase transitions. To obtain the relation, we study traveling wave solutions of a regularized problem that includes viscosity, heat conduction and convective heat exchange with an ambient medium. Both inertia and latent heat of transformation are taken into account. We investigate the effect of material parameters on the kinetic relation and show that in a certain range of parameters the driving force becomes a non-monotone function of the interface velocity. The model also predicts a nonzero resistance to phase boundary motion, part of which is caused by the thermal trapping. Received: November 15, 2001 / Published online September 4, 2002 RID="*" ID="*" e-mail: annav@math.pitt.edu Communicated by Lev Truskinovsky, Minneapolis  相似文献   

2.
This paper presents a theory to describe the dynamical behavior of a string made of a phase-transforming material like a shape-memory alloy. The study of phase boundaries, the driving force acting on them and the kinetic relation governing their propagation is of central concern. The paper proposes a qualitative experimental test of the notion of a kinetic relation, as well as a simple experimental method for measuring it quantitatively. It presents a numerical method for studying general initial and boundary value problems in strings, and concludes by exploring the use of phase transforming strings to generate motion at very small scales.  相似文献   

3.
An initiation criterion and a kinetic relation describing hysteresis in shape memory alloys consistent with non-equilibrium thermodynamics are proposed. The initiation of phase transition begins always at zero driving force, defined as the negative derivative of free energy with respect to the volume fraction of high strain phase. The kinetic relation is obtained from the dissipation potential which is proportional to the magnitude of the volume fraction rate times the newly formed volume fraction. The proposed theory turns out to be rate-independent, but history dependent, and can describe all features of hysteresis loops observed in experiments.   相似文献   

4.
A purely mechanical, sharp interface model is developed to consider curved interfaces that have been observed between martensite phase variants. The approach is based on a theory of small strains as distinct from small displacement gradients. It admits a realistic characterization of each phase with standard elasticity tensors and allows for inhomogeneous states of strain within each phase including inhomogeneous, finite rotations. The model indicates that any signficant interface curvature must be due to material rotation because interfaces cannot be finitely curved with respect to the material lattice. It is also found that the interface driving traction is not influenced by local lattice rotations unless inertia affects the reaction.  相似文献   

5.
6.
The Hugoniot curve relates the pressure and volume behind a shock wave, with the temperature having been eliminated. This paper studies the Hugoniot curve behind a propagating sharp interface between two material phases for a solid in which an impact-induced phase transition has taken place. For a solid capable of existing in only one phase, compressive impact produces a shock wave moving into material, say, at rest in an unstressed state at the ambient temperature. If the specimen can exist in either of two material phases, sufficiently severe impact may produce a disturbance with a two-wave structure: a shock wave in the low-pressure phase of the material, followed by a phase boundary separating the low- and high-pressure phases. We use a theory of phase transitions in thermoelastic materials to construct the Hugoniot curve behind the phase boundary in this two-wave circumstance. The kinetic relation controlling the evolution of the phase transition is an essential ingredient in this process.   相似文献   

7.
8.
We study a fully inertial model of a martensitic phase transition in a one-dimensional crystal lattice with long-range interactions. The model allows one to represent a broad range of dynamic regimes, from underdamped to overdamped. We systematically compare the discrete model with its various continuum counterparts including elastic, viscoelastic and viscosity-capillarity models. Each of these models generates a particular kinetic relation which links the driving force with the phase boundary velocity. We find that the viscoelastic model provides an upper bound for the critical driving force predicted by the discrete model, while the viscosity-capillarity model delivers a lower bound. We show that at near-sonic velocities, where inertia dominates dispersion, both discrete and continuum models behave qualitatively similarly. At small velocities, and in particular near the depinning threshold, the discreteness prevails and predictions of the continuum models cannot be trusted.   相似文献   

9.
The problem of defining the driving force for interface propagation in inelastic materials is discussed. In most publications, the driving force coincides with the Eshelby driving force, i.e. it represents a total dissipation increment on the moving interface due to all the dissipative processes (phase transition (PT) and plasticity). Recently (Levitas, V.I., 1992a. Post-bifurcation Behaviour in Finite Elastoplasticity. Applications to Strain Localization and Phase Transitions. Universität Hannover. Insititut für Baumecharik and Numerische Mechanik, [BNM-Bencht 1JP 585-LC, 92/5, Hannover; Int. J. Eng. Sci. 33 (1995) 921; Mech. Res. Commun. 22 (1995) 87; J. de Physique III 5 (1995) 173; J. De Physique III 5 (1995) 41; Int. J. Solids Struct. 35 (1998) 889], an alternative approach was developed in which the driving force represents the dissipation increment due to PT only, i.e. total dissipation minus plastic dissipation. The aim of this paper is to prove the contradictory character of application of the Eshelby driving force to inelastic materials. For this purposes, a problem on the interface propagation in a rigid–plastic half-space under homogeneous normal and shear stresses is solved using both definitions, along with the principle of the maximum the driving force. Finite strain theory is used. It appears that the first approach exhibits some qualitative contradictions, which are not observed in our approach. In particular, even for shape memory alloys, when transformation strain can be accommodated elastically (or even without internal stresses), maximization of the Eshelby driving force requires as much plasticity as possible. When applied shear stress tends to the yield stress in shear of a new phase, the driving force tends to infinity, i.e. PT has to always occur at the beginning of plastic flow. Note that in this paper plasticity means dislocation plasticity rather than plasticity due to twinning. Twinning during martensitic PT is the appearance of several martensitic variants which are in twin relation to each other. Consequently, for twinned martensite one has microheterogeneous transformation strain without plastic dissipation term, i.e. both approaches coincide.  相似文献   

10.
We consider a one-dimensional chain of phase-transforming springs with harmonic long-range interactions. The nearest-neighbor interactions are assumed to be trilinear, with a spinodal region separating two material phases. We derive the traveling wave solutions governing the motion of an isolated phase boundary through the chain and obtain the functional relation between the driving force and the velocity of a phase boundary which can be used as the closing kinetic relation for the classical continuum theory. We show that a sufficiently wide spinodal region substantially alters the phase boundary kinetics at low velocities and results in a richer solution structure, with phase boundaries emitting short-length lattice waves in both direction. Numerical simulations suggest that solutions of the Riemann problem for the discrete system converge to the obtained traveling waves near the phase boundary.  相似文献   

11.
The universal (i.e. independent of the constitutive equations) thermodynamic driving force for coherent interface reorientation during first-order phase transformations in solids is derived for small and finite strains. The derivation is performed for a representative volume with plane interfaces, homogeneous stresses and strains in phases and macroscopically homogeneous boundary conditions. Dissipation function for coupled interface (or multiple parallel interfaces) reorientation and propagation is derived for combined athermal and drag interface friction. The relation between the rates of single and multiple interface reorientation and propagation and the corresponding driving forces are derived using extremum principles of irreversible thermodynamics. They are used to derive complete system of equations for evolution of martensitic microstructure (consisting of austenite and a fine mixture of two martensitic variants) in a representative volume under complex thermomechanical loading. Viscous dissipation at the interface level introduces size dependence in the kinetic equation for the rate of volume fraction. General relationships for a representative volume with moving interfaces under piece-wise homogeneous boundary conditions are derived. It was found that the driving force for interface reorientation appears when macroscopically homogeneous stress or strain are prescribed, which corresponds to experiments. Boundary conditions are satisfied in an averaged way. In Part 2 of the paper [Levitas, V.I., Ozsoy, I.B., 2008. Micromechanical modeling of stress-induced phase transformations. Part 2. Computational algorithms and examples. Int. J. Plasticity (2008)], the developed theory is applied to the numerical modeling of the evolution of martensitic microstructure under three-dimensional thermomechanical loading during cubic-tetragonal and tetragonal-orthorhombic phase transformations.  相似文献   

12.
《力学快报》2021,11(5):100289
Data-driven computing in elasticity attempts to directly use experimental data on material, without constructing an empirical model of the constitutive relation, to predict an equilibrium state of a structure subjected to a specified external load. Provided that a data set comprising stress–strain pairs of material is available, a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie (Kanno 2021, Jpn. J. Ind. Appl. Math.). From the perspective of physical experiments, stress field cannot be directly measured, while displacement and force fields are measurable. In this study, we extend the previous kernel method to the situation that pairs of displacement and force, instead of pairs of stress and strain, are available as an input data set. A new regularized least-squares problem is formulated in this problem setting, and an alternating minimization algorithm is proposed to solve the problem.  相似文献   

13.
Kinetic relations and the propagation of phase boundaries in solids   总被引:6,自引:0,他引:6  
This paper treats the dynamics of phase transformations in elastic bars. The specific issue studied is the compatibility of the field equations and jump conditions of the one-dimensional theory of such bars with two additional constitutive requirements: a kinetic relation controlling the rate at which the phase transition takes place and a nucleation criterion for the initiation of the phase transition. A special elastic material with a piecewise-linear, non-monotonic stress-strain relation is considered, and the Riemann problem for this material is analyzed. For a large class of initial data, it is found that the kinetic relation and the nucleation criterion together single out a unique solution to this problem from among the infinitely many solutions that satisfy the entropy jump condition at all strain discontinuities.  相似文献   

14.
We study the kinetics of phase transformations in solids using the peridynamic formulation of continuum mechanics. The peridynamic theory is a nonlocal formulation that does not involve spatial derivatives, and is a powerful tool to study defects such as cracks and interfaces.We apply the peridynamic formulation to the motion of phase boundaries in one dimension. We show that unlike the classical continuum theory, the peridynamic formulation does not require any extraneous constitutive laws such as the kinetic relation (the relation between the velocity of the interface and the thermodynamic driving force acting across it) or the nucleation criterion (the criterion that determines whether a new phase arises from a single phase). Instead this information is obtained from inside the theory simply by specifying the inter-particle interaction. We derive a nucleation criterion by examining nucleation as a dynamic instability. We find the induced kinetic relation by analyzing the solutions of impact and release problems, and also directly by viewing phase boundaries as traveling waves.We also study the interaction of a phase boundary with an elastic non-transforming inclusion in two dimensions. We find that phase boundaries remain essentially planar with little bowing. Further, we find a new mechanism whereby acoustic waves ahead of the phase boundary nucleate new phase boundaries at the edges of the inclusion while the original phase boundary slows down or stops. Transformation proceeds as the freshly nucleated phase boundaries propagate leaving behind some untransformed martensite around the inclusion.  相似文献   

15.
The paper describes and compares the performance of two options for numerically representing the surface tension force in combination with the level set interface‐tracking method. In both models, the surface tension is represented as a body force, concentrated near the interface, but the technical implementation is different: the first model is based on a traditional level set approach in which the force is distributed in a band around the interface using a regularized delta function, whereas in the second, the force is partly distributed in a band around the interface and partly localized to the actual computational cells containing the interface. A comparative study, involving analysis of several two‐phase flows with moving interfaces, shows that in general the two surface tension models produce results of similar accuracy. However, in the particular case of merging and pinching‐off of interfaces, the traditional level set model of surface tension produces an error that results in non‐converging solutions for film‐like interfaces (i.e. ones involving large contact areas). In contrast, the second model, based on the localized representation of the surface tension force, displays consistent first‐order convergence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The theory of thermoelastic materials undergoing solid-solid phase transformations requires constitutive information that governs the evolution of a phase boundary. This is known as a kinetic relation which relates a driving traction to the speed of propagation of a phase boundary. The kinetic relation is prescribed in the theory from the onset. Here, though, a special kinetic relation is derived from an augmented theory that includes viscous, strain gradient and heat conduction effects. Based on a special class of solutions, namely travelling waves, the kinetic relation is inherited from the augmented theory as the viscosity, strain gradient and heat conductivity are removed by a suitable limit process.  相似文献   

17.
18.
A micromechanics-based thermodynamic model for the phase transition of ferroelectric crystals is developed and, with it, the shift of Curie temperature and evolution of ferroelectric phase upon cooling are examined. This approach differs from the classical phenomenological one in that the evolution of new domain concentration can be predicted. We start out by formulating the Gibbs free energy of a generic, two-phase crystal consisting of the parent paraelectric phase and the transformed ferroelectric phase, at a given level of temperature, stress, and electric field. The thermodynamic driving force for domain growth is then derived and, together with the resistance force, a kinetic equation is established. The derived driving force is found to arise from three different sources of Gibbs free energy: (i) the interaction energy due to the heterogeneity of electromechanical moduli of the parent and product phases, (ii) the energy dissipation due to spontaneous polarization, and (iii) the self-energy of the dual-phase system due to the existence of polarization strain and electric polarization. For a BaTiO3 crystal the electromechanical heterogeneity is found to play a rather significant role that seems not to have been recognized before. The derived shift recovers to the Clausius-Clapeyron relation if such heterogeneity disappears. We have examined in detail several factors that affect the shift of Curie temperature, and calculated the evolution of overall polarization and dielectric constant of a BaTiO3 crystal. The results are found to be consistent with available test data.  相似文献   

19.
界面是由复杂的界面相简化而成的,界面破坏实际是界面相材料的破坏。数值计算为了方便,如经典模型和内聚力模型等,都把很薄的界面相作无厚度化处理。导致只能考虑界面的面力,而无法考虑界面相内的应力(平行于界面方向的应力)。使界面失效准则先天性地排除了界面相内部应力的影响,从界面相材料失效机理的角度来看这是不够严谨的。本文将界面相材料等效为一种弹性连续体,由界面本构关系推导得到了一种新的界面单元。该单元具有界面参数易确定、对界面相物性可以进行等效描述等优点。通过商用有限元软件ABAQUS和用户子程序UEL实现了数值分析,并与直接物理模型的数值模拟结果进行对比,证明了本方法的简便及准确性。通过对不同界面相厚度结构的进一步分析,探讨了本文方法的可行范围。  相似文献   

20.
Summary In this work, equations of the kinetics and kinematics are developed for heterogeneous materials containing inelastic discontinuities with moving boundaries. From the derived free energy and the power of external forces one obtains the driving force acting on the moving boundary. Introducing the interface operators and some hypothesis on inelastic fields, one gets the driving force for the formation of an ellipsoidal domain. The theoretical model is illustrated by the derivation of nucleation and growth conditions of a martensitic plate inside an inhomogeneous plastic strain field. The obtained results are combined with a study of the kinetics and kinematics to derive the constitutive equation of an austenitic single crystal, from which the overall behavior of polycrystalline TRIP steels is deduced using the self-consistent scale-transition method. Comparison with experimental data shows a good agreement. Received 7 May 1999; accepted for publication 14 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号