首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An n‐vertex graph is called pancyclic if it contains a cycle of length t for all 3≤tn. In this article, we study pancyclicity of random graphs in the context of resilience, and prove that if p>n?1/2, then the random graph G(n, p) a.a.s. satisfies the following property: Every Hamiltonian subgraph of G(n, p) with more than edges is pancyclic. This result is best possible in two ways. First, the range of p is asymptotically tight; second, the proportion of edges cannot be reduced. Our theorem extends a classical theorem of Bondy, and is closely related to a recent work of Krivelevich et al. The proof uses a recent result of Schacht (also independently obtained by Conlon and Gowers). © 2011 Wiley Periodicals, Inc.  相似文献   

2.
We prove that there is a constant c > 0, such that whenever pnc, with probability tending to 1 when n goes to infinity, every maximum triangle‐free subgraph of the random graph Gn,p is bipartite. This answers a question of Babai, Simonovits and Spencer (Babai et al., J Graph Theory 14 (1990) 599–622). The proof is based on a tool of independent interest: we show, for instance, that the maximum cut of almost all graphs with M edges, where M ? n and M ≤ /2, is “nearly unique”. More precisely, given a maximum cut C of Gn,M, we can obtain all maximum cuts by moving at most \begin{align*}\mathcal{O}(\sqrt{n^3/M})\end{align*} vertices between the parts of C. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

3.
We propose a problem concerning the determination of the threshold function for the edge probability that guarantees, almost surely, the existence of various sparse spanning subgraphs in random graphs. We prove some bounds and demonstrate them in the cases of ad-cube and a two dimensional lattice.  相似文献   

4.
We shall prove that if L is a 3-chromatic (so called “forbidden”) graph, and —Rn is a random graph on n vertices, whose edges are chosen independently, with probability p, and —Bn is a bipartite subgraph of Rn of maximum size, —Fn is an L-free subgraph of Rn of maximum size, then (in some sense) Fn and Bn are very near to each other: almost surely they have almost the same number of edges, and one can delete Op(1) edges from Fn to obtain a bipartite graph. Moreover, with p = 1/2 and L any odd cycle, Fn is almost surely bipartite.  相似文献   

5.
A series of results are obtained on the stability of the independence number of random subgraphs of distance graphs, which are natural generalizations of the classical Kneser graphs.  相似文献   

6.
7.
The main aim of this short paper is to answer the following question. Given a fixed graph H, for which values of the degree d does a random d-regular graph on n vertices contain a copy of H with probability close to one?  相似文献   

8.
We consider random subgraphs of a fixed graph with large minimum degree. We fix a positive integer k and let Gk be the random subgraph where each independently chooses k random neighbors, making kn edges in all. When the minimum degree then Gk is k‐connected w.h.p. for ; Hamiltonian for k sufficiently large. When , then Gk has a cycle of length for . By w.h.p. we mean that the probability of non‐occurrence can be bounded by a function (or ) where . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 143–157, 2017  相似文献   

9.
We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges with two other copies is bounded. The proof of asymptotic normality of the distribution uses a method of factorial moments for variables with unbounded means that was recently derived by the authors. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

10.
We study the threshold for the existence of a spanning maximal planar subgraph in the random graph Gn, p . We show that it is very near p = 1/n? We also discuss the threshold for the existence of a spanning maximal outerplanar subgraph. This is very near p = 1/n½.  相似文献   

11.
For 0<1 and graphsG andH, writeGH if any -proportion of the edges ofG spans at least one copy ofH inG. As customary, writeK r for the complete graph onr vertices. We show that for every fixed real >0 there exists a constantC=C() such that almost every random graphG n,p withp=p(n)Cn –2/5 satisfiesG n,p 2/3+ K 4. The proof makes use of a variant of Szemerédi's regularity lemma for sparse graphs and is based on a certain superexponential estimate for the number of pseudo-random tripartite graphs whose triangles are not too well distributed. Related results and a general conjecture concerningH-free subgraphs of random graphs in the spirit of the Erds-Stone theorem are discussed.The first author was partially supported by FAPESP (Proc. 93/0603-1) and by CNPq (Proc. 300334/93-1 and ProTeM-CC-II Project ProComb). Part of this work was done while the second author was visiting the University of São Paulo, supported by FAPESP (Proc. 94/4276-8). The third author was partially supported by the NSF grant DMS-9401559.  相似文献   

12.
13.
We introduce a model for random chordal graphs. We determine the thresholds for: the first edge, completeness, isolated vertices and connectivity. Like the Erdös-Rényi model, the thresholds for isolated vertices and connectivity are the same. Unlike the Erdös-Rényi model in which the threshold occurs at 1/2n logn edges, this threshold occurs atO(n 2) edges.Research supported in part by the Office of Naval Research, contract number N00014-85-K0622.  相似文献   

14.
We consider the distance graph G(n, r, s), whose vertices can be identified with r-element subsets of the set {1, 2,..., n}, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is s. For s = 0, such graphs are known as Kneser graphs. These graphs are closely related to the Erd?s–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of G(n, r, s) in the Erd?s–Rényi model, in which every edge occurs in the subgraph with some given probability p independently of the other edges. We find the asymptotics of the independence number of a random subgraph of G(n, r, s) for the case of constant r and s. The independence number of a random subgraph is Θ(log2n) times as large as that of the graph G(n, r, s) itself for r ≤ 2s + 1, while for r > 2s + 1 one has asymptotic stability: the two independence numbers asymptotically coincide.  相似文献   

15.
A question about the evolution of random spanning subgraphs G p of bipartite regular so called cubelike graphs G is considered. It is shown that for G p of any large enough cubelike graph G the threshold to have a 1-factor is the same as the threshold to have no isolated vertices. This generalizes a conjecture of K. Weber.  相似文献   

16.
17.
Consider the following random process: The vertices of a binomial random graph Gn,p are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number r of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph F in the process. Our first main result is that for any F and r, the threshold function for this problem is given by p0(F,r,n) = n‐1/m*1(F,r), where m*1(F,r) denotes the so‐called online vertex‐Ramsey density of F and r. This parameter is defined via a purely deterministic two‐player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any F and r, the online vertex‐Ramsey density m*1(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial‐time online algorithms that succeed in coloring Gn,p as desired with probability 1 ‐ o(1) for any p(n) = o(n‐1/m*1(F,r)). © 2012 Wiley Periodicals, Inc. Random Struct. Alg. 44, 419–464, 2014  相似文献   

18.
19.
For let denote the tree consisting of an ‐vertex path with disjoint ‐vertex paths beginning at each of its vertices. An old conjecture says that for any the threshold for the random graph to contain is at . Here we verify this for with any fixed . In a companion paper, using very different methods, we treat the complementary range, proving the conjecture for (with ). © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 794–802, 2016  相似文献   

20.
In this paper, we examine the moments of the number of d ‐factors in begin{align*}mathcal{ G}(n,p)end{align*} for all p and d satisfying d3 = o(p2n). We also determine the limiting distribution of the number of d ‐factors inside this range with further restriction that begin{align*}(1-p)sqrt{dn}toinftyend{align*} as n.© 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号