首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

2.
The Multi-commodity Capacitated Multi-facility Weber Problem (MCMWP) is concerned with locating I-capacitated facilities in the plane in order to satisfy the demands of J customers for K commodities so that the total transportation cost is minimized. We propose a Lagrangean relaxation scheme and a subgradient-like algorithm based on the relaxation of the capacity and commodity bundle constraints. The resulting subproblem is a variant of the well-known Multi-facility Weber Problem and it can be solved by using column generation and branch-and-price on an equivalent set covering formulation, which is accurate but extremely inefficient. Therefore, we devise different strategies to increase the efficiency. They mainly benefit from the effective usage of the lower and upper bounds on the optimal value of the Lagrangean subproblem. On the basis of extensive computational tests, we can say that they increase the efficiency considerably and result in accurate Lagrangean heuristics.  相似文献   

3.
A generalized Weiszfeld method for the multi-facility location problem   总被引:1,自引:0,他引:1  
An iterative method is proposed for the K facilities location problem. The problem is relaxed using probabilistic assignments, depending on the distances to the facilities. The probabilities, that decompose the problem into K single-facility location problems, are updated at each iteration together with the facility locations. The proposed method is a natural generalization of the Weiszfeld method to several facilities.  相似文献   

4.
The cumulative capacitated vehicle routing problem (CCVRP) is a combinatorial optimization problem which aims to minimize the sum of arrival times at customers. This paper presents a brain storm optimization algorithm to solve the CCVRP. Based on the characteristics of the CCVRP, we design new convergent and divergent operations. The convergent operation picks up and perturbs the best-so-far solution. It decomposes the resulting solution into a set of independent partial solutions and then determines a set of subproblems which are smaller CCVRPs. Instead of directly generating solutions for the original problem, the divergent operation selects one of three operators to generate new solutions for subproblems and then assembles a solution to the original problem by using those new solutions to the subproblems. The proposed algorithm was tested on benchmark instances, some of which have more than 560 nodes. The results show that our algorithm is very effective in contrast to the existing algorithms. Most notably, the proposed algorithm can find new best solutions for 8 medium instances and 7 large instances within short time.  相似文献   

5.
The paper presents an algorithm for finding the weighted absolute center of a given set of points in the Euclidean plane.The algorithm is a specialized implementation of the method of feasible directions.The presentation includes a proof of convergence as well as computational experience.  相似文献   

6.
In this paper, we present a cut-and-solve (CS) based exact algorithm for the Single Source Capacitated Facility Location Problem (SSCFLP). At each level of CS’s branching tree, it has only two nodes, corresponding to the Sparse Problem (SP) and the Dense Problem (DP), respectively. The SP, whose solution space is relatively small with the values of some variables fixed to zero, is solved to optimality by using a commercial MIP solver and its solution if it exists provides an upper bound to the SSCFLP. Meanwhile, the resolution of the LP of DP provides a lower bound for the SSCFLP. A cutting plane method which combines the lifted cover inequalities and Fenchel cutting planes to separate the 0–1 knapsack polytopes is applied to strengthen the lower bound of SSCFLP and that of DP. These lower bounds are further tightened with a partial integrality strategy. Numerical tests on benchmark instances demonstrate the effectiveness of the proposed cutting plane algorithm and the partial integrality strategy in reducing integrality gap and the effectiveness of the CS approach in searching an optimal solution in a reasonable time. Computational results on large sized instances are also presented.  相似文献   

7.
In this paper we consider the problem of constructing a network over which a number of commodities are to be transported. Fixed costs are associated to the construction of network arcs and variable costs are associated to routing of commodities. In addition, one capacity constraint is related to each arc. The problem is to determine a network design that minimizes the total cost; i.e., it balances the construction and operating costs. A dual ascent procedure for finding improved lower bounds and near-optimal solutions for the fixed-charge capacitated network design problem is proposed. The method is shown to generate tighter lower bounds than the linear programming relaxation of the problem.  相似文献   

8.
In this paper we present a lower bound for the capacitated warehouse location problem based upon the Lagrangean relaxation of a mixed-integer formulation of the problem, where we use subgradient optimisation in an attempt to maximise this lower bound. Problem reduction tests based upon this lower bound and the original problem are given. Incorporating this bound and the reduction tests into a tree search procedure enables us to solve problems involving up to 50 warehouses and 150 customers.  相似文献   

9.
This paper proposes a scatter search-based heuristic approach to the capacitated clustering problem. In this problem, a given set of customers with known demands must be partitioned into p distinct clusters. Each cluster is specified by a customer acting as a cluster center for this cluster. The objective is to minimize the sum of distances from all cluster centers to all other customers in their cluster, such that a given capacity limit of the cluster is not exceeded and that every customer is assigned to exactly one cluster. Computational results on a set of instances from the literature indicate that the heuristic is among the best heuristics developed for this problem.  相似文献   

10.
The capacitated facility location problem (CFLP) is a well-known combinatorial optimization problem with applications in distribution and production planning. It consists in selecting plant sites from a finite set of potential sites and in allocating customer demands in such a way as to minimize operating and transportation costs. A number of solution approaches based on Lagrangean relaxation and subgradient optimization has been proposed for this problem. Subgradient optimization does not provide a primal (fractional) optimal solution to the corresponding master problem. However, in order to compute optimal solutions to large or difficult problem instances by means of a branch-and-bound procedure information about such a primal fractional solution can be advantageous. In this paper, a (stabilized) column generation method is, therefore, employed in order to solve a corresponding master problem exactly. The column generation procedure is then employed within a branch-and-price algorithm for computing optimal solutions to the CFLP. Computational results are reported for a set of larger and difficult problem instances.  相似文献   

11.
《Optimization》2012,61(6):563-577
In this article, we first propose an unconstrained optimization reformulation of the generalized nonlinear complementarity problem (GNCP) over a polyhedral cone, and then discuss the conditions under which its any stationary point is a solution of the GNCP. The conditions which guarantee the nonsingularity and positive definiteness of the Hessian matrix of the objective function are also given. In the end, we design a Newton-type method to solve the GNCP and show the global and local quadratic convergence of the proposed method under certain assumptions.  相似文献   

12.
This paper proposes a perturbation-based heuristic for the capacitated multisource Weber problem. This procedure is based on an effective use of borderline customers. Several implementations are considered and the two most appropriate are then computationally enhanced by using a reduced neighbourhood when solving the transportation problem. Computational results are presented using data sets from the literature, originally used for the uncapacitated case, with encouraging results.  相似文献   

13.
Jiang  Rujun  Li  Duan  Wu  Baiyi 《Mathematical Programming》2018,169(2):531-563
Mathematical Programming - We investigate in this paper the generalized trust region subproblem (GTRS) of minimizing a general quadratic objective function subject to a general quadratic inequality...  相似文献   

14.
The authors study analytic discs that are “attached to” a red submanifold having minimal smoothness. They prove a new uniqueness and regularity theorem by using the technique of the Riemann–Hilbert problem. They also present a new method for conatructing families of analytic discs lhat osculate a surface.  相似文献   

15.
This paper considers the Periodic Capacitated Arc Routing Problem (PCARP), a natural extension of the well-known CARP to a multi-period horizon. Its objective is to assign a set of service days to each edge in a given network and to solve the resulting CARP for each period, in order to minimize the required fleet size and the total cost of the trips on the horizon. This new and very hard problem has various applications in periodic operations on street networks, like waste collection and sweeping. A greedy heuristic and a Scatter Search (SS) are developed and evaluated on two sets of PCARP instances derived from classical CARP benchmarks. The results show that the SS strongly improves its initial solutions and clearly outperforms the greedy heuristic. Preliminary lower bounds are also provided. As they are not sufficiently tight, the SS is also tested in the single-period case (CARP) for which tight bounds are available: in fact, it competes with one state-of-the-art metaheuristic proposed for the CARP.  相似文献   

16.
In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The algorithm is based on branch-and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem.  相似文献   

17.
Lagrangean techniques have been widely applied to the uncapacitated plant location problem, and in some cases they have proven to be successfull even when capacitated problems with additional constraints are taken into account. In our paper we study the application of these techniques to the capacitated plant location problem when the model considered is a pure integer one. Several lagrangean decompositions are considered and for some of them heuristic algorithms have been designed to solve the resulting lagrangean subproblems, the heuristics consisting of a two phase procedure. The first (location phase) defines a set of multipliers from the analysis of the dual LP relaxation, and makes a choice of the plants considering the resulting subproblems as a particular case of the general assignment problems. Several heuristics have been studied for this second phase, based either on a decomposition of knapsack type subproblems through a definition of a set of penalties, or of looking into the duality gap and trying to reduce it. Computational experience is reported.  相似文献   

18.
The Capacitated Warehouse Location Problem (CWLP) consists of the ordinary transportation problem with the additional feature of a fixed cost associated with each supplier. A supplier can be used towards meeting the demands of the customers only if the corresponding fixed cost is incurred. The problem is to determine which suppliers to use and how the customer demands should be met, so that total cost is minimised.Most of the recently published algorithms for CWLP use branch and bound based on a Lagrangian relaxation of demand constraints. Here, a partial dual of a tight LP formulation is used in order to take advantage of the properties of transportation problems. Computational results are given which show good overall performance of the algorithm, with the size of the tree search being reduced compared with previous published results.  相似文献   

19.
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving theP 0 function nonlinear complementarity problem ( NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving theP 0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP  相似文献   

20.
The Capacitated Facility Location Problem (CFLP) is to locate a set of facilities with capacity constraints, to satisfy at the minimum cost the order-demands of a set of clients. A multi-source version of the problem is considered in which each client can be served by more than one facility. In this paper we present a reformulation of the CFLP based on Mixed Dicut Inequalities, a family of minimum knapsack inequalities of a mixed type, containing both binary and continuous (flow) variables. By aggregating flow variables, any Mixed Dicut Inequality turns into a binary minimum knapsack inequality with a single continuous variable. We will refer to the convex hull of the feasible solutions of this minimum knapsack problem as the Mixed Dicut polytope. We observe that the Mixed Dicut polytope is a rich source of valid inequalities for the CFLP: basic families of valid CFLP inequalities, like Variable Upper Bounds, Cover, Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut polytope. Furthermore we observe that new families of valid inequalities for the CFLP can be derived by the lifting procedures studied for the minimum knapsack problem with a single continuous variable. To deal with large-scale instances, we have developed a Branch-and-Cut-and-Price algorithm, where the separation algorithm consists of the complete enumeration of the facets of the Mixed Dicut polytope for a set of candidate Mixed Dicut Inequalities. We observe that our procedure returns inequalities that dominate most of the known classes of inequalities presented in the literature. We report on computational experience with instances up to 1000 facilities and 1000 clients to validate the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号