首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ng MT  Vittal JJ 《Inorganic chemistry》2006,45(25):10147-10154
(Et3NH)[In(SeC{O}Ph)4].H2O (1) along with heterobimetallic and polymeric metal selenocarboxylates, namely [NaGa(SeC{O}Ph)4] (2), [K(MeCN)2Ga(SeC{O}Ph)4] (3), [NaIn(SeC{O}Ph)4] (4), [K(MeCN)2In(SeC{O}Ph)4] (5), [(Ph3P)2CuIn(SeC{O}Ph)4].CH2Cl2 (6), and [(Ph3P)2AgIn(SeC{O}Ph)4].CH2Cl2 (7), have been synthesized by incorporating either alkali metal ions (Na+ and K+) or group 11 metal ions (Cu(I) and Ag(I)) into the [M(SeC{O}Ph)4]- anion. Crystal structures determined by X-ray crystallography indicate that 3 and 5 have one-dimensional coordination polymeric structures while 6 and 7 have an M(mu-Se)2In (M = Cu, Ag) core. The thermal decomposition of these compounds except 4 lead to the formation of the corresponding metal selenides as confirmed by thermogravimetric analysis and in some cases by powder X-ray diffraction studies.  相似文献   

2.
The complexes trans-[Rh(X)(XNC)(PPh 3) 2] (X = Cl, 1; Br, 2; SC 6F 5, 3; C 2Ph, 4; XNC = xylyl isocyanide) combine reversibly with molecular oxygen to give [Rh(X)(O 2)(XNC)(PPh 3) 2] of which [Rh(SC 6F 5)(O 2)(XNC)(PPh 3) 2] ( 7) and [Rh(C 2Ph)(O 2)(XNC)(PPh 3) 2] ( 8) are sufficiently stable to be isolated in crystalline form. Complexes 2, 3, 4, and 7 have been structurally characterized. Kinetic data for the dissociation of O 2 from the dioxygen adducts of 1- 4 were obtained using (31)P NMR to monitor changes in the concentration of [Rh(X)(O 2)(XNC)(PPh 3) 2] (X = Cl, Br, SC 6F 5, C 2Ph) resulting from the bubbling of argon through the respective warmed solutions (solvent chlorobenzene). From data recorded at temperatures in the range 30-70 degrees C, activation parameters were obtained as follows: Delta H (++) (kJ mol (-1)): 31.7 +/- 1.6 (X = Cl), 52.1 +/- 4.3 (X = Br), 66.0 +/- 5.8 (X = SC 6F 5), 101.3 +/- 1.8 (X = C 2Ph); Delta S (++) (J K (-1) mol (-1)): -170.3 +/- 5.0 (X = Cl), -120 +/- 13.6 (X = Br), -89 +/- 18.2 (X = SC 6F 5), -6.4 +/- 5.4 (X = C 2Ph). The values of Delta H (++) and Delta S (++) are closely correlated (R (2) = 0.9997), consistent with a common dissociation pathway along which the rate-determining step occurs at a different position for each X. Relative magnitudes of Delta H (++) are interpreted in terms of differing polarizabilities of ligands X.  相似文献   

3.
Several new diorganodiselenides containing (imino)aryl groups, [2-(RN[double bond, length as m-dash]CH)C(6)H(4)](2)Se(2) [R = Me(2)NCH(2)CH(2) (4), O(CH(2)CH(2))(2)NCH(2)CH(2) (5), PhCH(2) (6), 2',6'-(i)Pr(2)C(6)H(3) (7)] were obtained by reacting [2-{(O)CH}C(6)H(4)](2)Se(2) (3) with RNH(2). Treatment of the diselenides 6 and 7 with stoichiometric amounts of K-selectride or Na resulted in isolation of the selenolates K[SeC(6)H(4)(CH[double bond, length as m-dash]NCH(2)Ph)-2] (9) and Na[SeC(6)H(4)(CH[double bond, length as m-dash]NC(6)H(3)(i)Pr(2)-2',6')-2] (10), respectively. The reaction of potassium selenolates with anhydrous ZnCl(2) (2:1 molar ratio) gave Zn[SeC(6)H(4)(CH=NCH(2)Ph)-2](2) (11) and Zn[SeC(6)H(4)(CH[double bond, length as m-dash]NC(6)H(3)(i)Pr(2)-2',6')-2](2) (12). When the dark green solution obtained from diselenide 7 and an excess of Na (after removal of the unreacted metal) was reacted with anhydrous ZnCl(2) a carbon-carbon coupling reaction occurred and the 9,10-(2',6'-(i)Pr(2)C(6)H(3)NH)(2)C(14)H(10) (8) species was obtained. The compounds were investigated in solution by multinuclear NMR ((1)H, (13)C, (77)Se, including 2D and variable temperature experiments) and by mass spectrometry. The molecular structures of 6, 8, 11 and 12 were established by single-crystal X-ray diffraction. All compounds are monomeric in the solid state. In the diselenide 6 the (imino)aryl group acts as a (C,N)-ligand resulting in a distorted T-shaped coordination geometry of type (C,N)SeX (X = Se). For the zinc complexes 11 and 12 the (Se,N) chelate pattern of the selenolato ligands results in tetrahedral Zn(Se,N)(2) cores.  相似文献   

4.
The reaction of Pd(OAc)2 with bis-iminophosphoranes Ph3P=NCH2CH2CH2N=PPh3 (1a), [C6H4(C(O)N=PPh3)2-1,3] (1b) and [C6H4(C(O)N=PPh3)2-1,2] (1c), gives the orthopalladated tetranuclear complexes [{Pd(mu-Cl){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2]2 (2a) [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3']2 (2b) and [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2']2 (2c). The reaction takes place in CH2Cl2 for 1a, but must be performed in glacial acetic acid for 1b and 1c. The process implies in all cases the activation of a C-H bond on a Ph ring of the phosphonium group, with concomitant formation of endo complexes. This is the expected behaviour for 1a, but for 1b and 1c reverses the exo orientation observed in other ketostabilized iminophosphoranes. The influence of the solvent in the orientation of the reaction is discussed. The dinuclear acetylacetonate complexes [{Pd(acac-O,O'){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2] (3a), [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3'] (3b) and [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2'] (3c) have been obtained from the halide-bridging tetranuclear derivatives. The X-ray crystal structure of [3c.4CHCl3] is also reported.  相似文献   

5.
The cooperative forces of aurophilic and hydrogen bonding have been used in the self-assembly of phosphine or diphosphine complexes of gold(I) with the thiolate ligands derived from 2-thiobarbituric acid, SC(4)H(4)N(2)O(2), by single or double deprotonation. The reaction of the corresponding gold(I) trifluoroacetate complex with SC(4)H(4)N(2)O(2) gave the complexes [Au(SC(4)H(3)N(2)O(2))(PPh(3))], 1, [(AuSC(4)H(3)N(2)O(2))(2)(micro-LL)], with LL = Ph(2)PCH(2)PPh(2), 2a, Ph(2)P(CH(2))(3)PPh(2), 2b, or Ph(2)PCH=CHPPh(2), 2c, or the cyclic complex [Au(2)(micro-SC(4)H(2)N(2)O(2))(micro-Ph(2)PCH(2)CH(2)PPh(2))], 3. In the case with LL = Ph(2)P(CH(2))(6)PPh(2), the reaction led to loss of the diphosphine ligand to give [Au(6)(SC(4)H(3)N(2)O(2))(6)], 4, a hexagold(I) cluster complex in which each gold(I) center has trigonal AuS(2)N coordination. Structure determinations show that 1 has no aurophilic bonding, 2b, 3, and 4 have intramolecular aurophilic bonding, and 2c has intermolecular aurophilic bonding that contributes to the supramolecular structure. All the complexes undergo supramolecular association through strong NH...O and/or OH...N hydrogen bonding, and complex 3 also takes part in CH...O hydrogen bonding. The supramolecular association leads to formation of interesting polymer, sheet, or network structures, and 4 has a highly porous and stable lattice structure.  相似文献   

6.
Reactions of [MCl2(tmeda)] with potassium salts of monoselenocarboxylic acids gave complexes of the general formula [M(SeCOR)2(tmeda)] (M = Zn, Cd; R = Ph, Tol; Tol = C6H4-p-CH3; tmeda = Me2NCH2CH2NMe2). The analogous mercury complexes were unstable at room temperature and afforded HgSe nanoparticles during the course of reaction. All the complexes were characterized by elemental analysis, IR, UV-vis, NMR (1H, 13C, 77Se, 113Cd) data. The X-ray structural analysis of [Cd(SeCOPh)2(tmeda)] revealed that the complex is a discrete monomer having an approximate tetrahedral coordination environment around the central metal atom with monodentate (Se-bonded) selenocarboxylates. Thermal behavior of these complexes was studied by TG analysis. Pyrolysis in a furnace or in HDA (hexadecylamine) gave MSe nanoparticles, which were characterized by XRD, EDAX, SEM and absorption spectroscopy.  相似文献   

7.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

8.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

9.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

10.
Li Z  Zheng W  Liu H  Mok KF  Hor TS 《Inorganic chemistry》2003,42(25):8481-8488
A series of heterometallic Pt-M (M=Zn and Cd) sulfide aggregates with growing nuclearities (Pt2M), (Pt4M), and (Pt4M2), viz., [ZnPt2Cl2(PPh3)4(mu3-S)2] (2), [CdPt2Cl2(PPh3)4(mu3-S)2] (3), [Pt2(PPh3)4(mu3-S)2]2[ZnSO4]2 (4), [Pt2(PPh3)4(mu3-S)2]2[CdSO4]2.H2O (5), [CdPt4(PPh3)8(mu3-S)4][ClO4]2 (7), and [ZnPt4(PPh3)8(mu3-S)4][ClO4]2 (8), have been prepared from Pt2(PPh3)4(mu-S)2 (1) with appropriate zinc and cadmium substrates. The structures have been determined by single-crystal X-ray diffraction. The supporting anions play an active role in the structural assembly process. An unexpected disintegration complex [Pt2(S2CH2)Cl(PPh3)4][PF6] (6) has also been isolated and characterized by single-crystal X-ray diffraction. The mechanism of the formation of 6 is proposed.  相似文献   

11.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

12.
The tosylate (p-toluenesulfonate) cluster [Bu4N]2[W6Cl8(p-OSO2C6H4CH3)6] (1) has been prepared and characterized by IR and NMR spectroscopy, elemental analysis, and an X-ray crystal structure. This cluster complex is shown to be a useful starting material for the preparation of pseudohalide clusters, [Bu4N]2[W6Cl8(NCQ)6] (Q = O (2), S (3), and Se (4)), in high yields. Cluster 1 also serves as a precursor to the new cluster compounds: [Bu4N]2[W6Cl8(O2CCH3)6] (5), [Bu4N]2[W6Cl8((mu-NC)Mn(CO)2(C5H5))6] (6), [W6Cl8((mu-NC)Ru(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (7), and [W6Cl8((mu-NC)Os(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (8). X-ray crystal structures are reported for 1, 4, and 5.  相似文献   

13.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

14.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

15.
The novel complexes [Zn(L)Cl] (1), [Cd(L)Cl] (2), [Hg(L)Cl] (3), {[Hg(L)Cl].NaOH.2H2O} (3.NaOH.2H2O), and {[Hg3(HL)2Cl6].2H2O} (4) (L = -SCH2CH2NH2) were prepared and investigated by means of IR spectroscopy and single-crystal X-ray diffraction. The crystal structures of 1, 2, and 3.NaOH.2H2O show chelating N,S-coordination of the cysteaminate ligand, bridging S, and terminally coordinating Cl. Apart from these common features, the coordination geometries and modes of intermolecular association are different. 1 forms a cyclic tetramer with a Zn4S4 ring, and 3.NaOH.2H2O contains one-dimensional [Hg(L)Cl]n chains with S-bridged Hg atoms. Zn and Hg atoms in 1 and 3.NaOH.2H2O are tetracoordinate with a distorted tetrahedral M(ClNS2) geometry (M = Zn, Hg). Each Cd atom of 2 binds to three S atoms and vice versa, such that layers of distorted Cd3S3 hexagons are formed. 2 is the first example for a compound exhibiting a group 12-group 16 layer structure, which can be described as an analogue of a graphite layer. Additionally, each Cd atom binds to a chlorine atom and a nitrogen atom from a cysteaminate ligand resulting in pentacoordination with a distorted trigonal bipyramidal Cd(ClNS3) geometry. 4 contains two differently coordinate Hg atoms. One displays a distorted trans-octahedral Hg(Cl4S2) geometry, while the other is coordinated by four Cl atoms and one S atom and additionally forms a long Hg...Cl contact.  相似文献   

16.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

17.
Reactions of coordinatively unsaturated Ru[N(Ph2PQ)2]2(PPh3) (Q = S (1), Se (2)) with pyridine (py), SO2, and NH3 afford the corresponding 18e adducts Ru[N(Ph2PQ)2]2(PPh3)(L) (Q = S, L = NH3 (5); Q = Se, L = py (3), SO2 (4), NH3 (6)). The molecular structures of complexes 2 and 6 are determined. The geometry around Ru in 2 is pseudo square pyramidal with PPh3 occupying the apical position, while that in 6 is pseudooctahedral with PPh3 and NH3 mutually cis. The Ru-P distances in 2 and 6 are 2.2025(11) and 2.2778(11) A, respectively. The Ru-N bond length in 6 is 2.185(3) A. Treatment of 1 or 2 with substituted hydrazines L or NH2OH yields the respective adducts Ru[N(Ph2PQ)2]2(PPh3)(L) (Q = S, L = NH2NH2 (12), t-BuNHNH2 (14), l-aminopiperidine (C5H10NNH2) (15); Q = Se, L = PhCONHNH2 (7), PhNHNH2 (8), NH2OH (9), t-BuNHNH2 (10), C5H10NNH2 (11), NH2NH2 (13)), which are isolated as mixtures of their trans and cis isomers. The structures of cis-14 and cis-15 are characterized by X-ray crystallography. In both molecular structures, the ruthenium adopts a pseudooctahedral arrangement with PPh3 and hydrazine mutually cis. The Ru-N bond lengths in cis-14.CH2Cl2 and cis-15 are 2.152(3) and 2.101(3) A, respectively. The Ru-N-N bond angles in cis-14.CH2Cl2 and cis-15 are 120.5(4) and 129.0(2) degrees, respectively. Treatment of 1 with hydrazine monohydrate leads to the isolation of yellow 5 and red trans-Ru[N(Ph2PS)2]2(NH3)(H2O) (16), which are characterized by mass spectrometry, 1H NMR spectroscopy, and elemental analyses. The geometry around ruthenium in 16 is pseudooctahedral with the NH3 and H2O ligands mutually trans. The Ru-O and Ru-N bond distances are 2.118(4) and 2.142(6) A, respectively. Oxidation reactions of the above ruthenium hydrazine complexes are also studied.  相似文献   

18.
Treatment of the gold(I) halide complexes LAuCl (L = PMe3, PPh3, CNC6H3Me2-2,6) with K[Ph2P(Se)NP(Se)Ph2] provides the gold-selenium coordination compounds [(N(Ph2PSe)2-Se,Se')AuL]. However, on standing for a number of days, the complex [(N(Ph2PSe)2-Se,Se')AuPMe3] gains a phosphine to provide the bis(phosphine) species [(N(Ph2PSe)2-Se,Se')Au(PMe3)2]. Treatment of the K[Ph2P(Se)NP(Se)Ph2] ligand with [(Ph3PAu)3O]BF4 allows the isolation of [(N(Ph2PSe)2-Se,Se')(AuPPh3)2]BF4. Reaction of the complex [(dppm)(AuCl)2] with AgSO3CF3 followed by addition of the ligand K[Ph2P(Se)NP(Se)Ph2] results in the formation of [(N(Ph2PSe)2-Se,Se')Au2(dppm)]OSO2CF3 and treatment of [(tht)AuCl] (tht = tetrahydrothiophene) with an equimolar quantity of K[Ph2P(Se)NP(Se)Ph2] affords the complex [(N(Ph2PSe)2-Se,Se')2Au2]. The compounds [(N(Ph2PSe)2-Se,Se')Au2(dppm)]OSO2CF3, [(N(Ph2PSe)2-Se,Se')AuPPh3] and [(N(Ph2PSe)2-Se,Se')Au(PMe3)2] have been investigated crystallographically. The results reveal that the metal centers are two-, three-, and four-coordinate, respectively. The cationic, eight-membered ring complex bearing the dppm ligand displays transannular aurophilic bonding and is further associated into dimers via intermolecular gold-selenium contacts. The six-membered rings in the other two structures have C2-symmetrical twist conformations, however, the Au(I) coordination sphere in [N(PPh2Se)2]AuPPh3 is not fully symmetrical. The Au-Se bond lengths increase dramatically as the coordination number of the metal atom becomes larger.  相似文献   

19.
Copper(I) complexes of the tridentate thioether ligands [PhB(CH(2)SCH(3))(3)] (abbreviated PhTt), [PhB(CH(2)SPh)(3)] (PhTt(Ph)), [PhB(CH(2)S(t)()Bu)(3)] (PhTt(t)()(Bu)), and [PhB(CH(2)S(p)()Tol)(3)] (PhTt(p)()(Tol)) and bidentate thioether ligands [Ph(2)B(CH(2)SCH(3))(2)] (Ph(2)Bt), [Et(2)B(CH(2)SCH(3))(2)] (Et(2)Bt), and [Ph(2)B(CH(2)SPh)(2)] (Ph(2)Bt(Ph)) have been prepared and characterized. The solution and solid state structures are highly sensitive to the identity of the borato ligand employed. Ligands possessing the smaller (methylthio)methyl donors, [PhTt] and [Ph(2)Bt], yielded tetrameric species, [(PhTt)Cu](4) and [(Ph(2)Bt)Cu](4), containing both terminal and bridging thioether ligation. The ligands containing the larger (arylthio)methyl groups, [PhTt(Ph)] and [PhTt(p)()(Tol)], form monomeric [PhTt(Ar)]Cu(NCCH(3)) in solution and one-dimensional extended structures in the solid state. Each complex type reacted cleanly with acetonitrile, pyridine, or triphenylphosphine generating the corresponding four-coordinate monomer, of which [PhTt(Ph)]Cu(PPh(3)), [PhTt(p)()(Tol)]Cu(PPh(3)), and [Et(2)Bt]Cu(PPh(3))(2) have been structurally characterized.  相似文献   

20.
Air-stable rhenium(V) nitrido complexes are formed when [ReOCl3(PPh3)2], [NBu4][ReOCl4], or [NBu4][ReNCl4] are treated with an excess of silylated phosphoraneiminates of the composition Me3SiNPPh3 or Ph2P(NSiMe3)CH2PPh2 in CH2Cl2. Complexes of the compositions [ReNCl(Ph2PCH2PPh2NH)2]Cl (1), [ReN(OSiMe3)(Ph2PCH2PPh2NH)2]Cl (2) or [ReNCl2(PPh3)2] (3) were isolated and structurally characterized. The latter compound was also produced during a reaction of the rhenium(III) precursor [ReCl3(PPh3)2(CH3CN)] and Me3SiNPPh3. Nitrogen transfer from the phosphorus to the rhenium atoms and the formation of nitrido ligands were observed in all examples. All products of reactions with an excess of the potentially chelating phosphoraneiminate Me3SiNP(Ph2)CH2PPh2 contain neutral Ph2PCH2PPh2NH ligands. The required protons are supplied by a metal-induced decomposition of the solvent dichloromethane. The Re-N(imine) bond lengths (2.055-2.110 A) indicate single bonds, whereas the N-P bond with lengths between 1.596 A and 1.611 A reflect considerable double bond character. An oxorhenium(V) phosphoraneiminato complex, the dimeric compound [ReOCl2(mu-N-Ph2PCH2PPh2N)]2 (4), is formed during the reaction of [NBu4][ReOCl4] with an equivalent amount of Ph2P(NSiMe3)CH2PPh in dry acetonitrile. The blue neutral complex with two bridging phosphoraneiminato units is stable as a solid and in dry solvents. It decomposes in solution, when traces of water are present. The rhenium-nitrogen distances of 2.028(3) and 2.082(3) A are in the typical range of bridging phosphoraneiminates and an almost symmetric bonding mode. Technetium complexes with phosphoraneimine ligands were isolated from reactions of [NBu4][TcOCl4] with Me3SiNPPh3, and [NBu4][TcNCl4] with Me3SiNP(Ph2)CH2PPh2. Nitrogen transfer and the formation of a five-coordinate nitrido species, [TcNCl2(HNPPh3)2] (5), was observed in the case of the oxo precursor, whereas reduction of the technetium(VI) starting material and the formation of the neutral technetium(V) complex [TcNCl2(Ph2PCH2PPh2NH)] (6) or [TcNCl(Ph2PCH2PPh2NH)2]Cl (7) was observed in the latter case. Both technetium complexes are air stable and X-ray structure determinations show bonding modes of the phosphoraneimines similar to those in the rhenium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号