首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of CoII with N,N-bis-(3-carboxy-1-oxopropanyl)-1,2-ethylenediamine(L1), N,N-bis-(3-carboxy-1-oxopropanyl)-1,2-phenylenediamine(L2), N,N-bis-(2-carboxy-1-oxophenelenyl)-1,2-phenylenediamine(L3) and N,N-bis-(3-carboxy-1-oxoprop-2-enyl)-1,2-phenylenediamine(L4) have been prepared and characterized by elemental analysis, vibrational spectra, magnetic susceptibility measurements, electronic spectra and thermal studies. Stability constants of the complexes have been evaluated potentiometrically. Vibrational spectra indicate coordination of amide and carboxylate oxygens of the ligands along with two water molecules giving a MO6 weak field octahedral chromophore. Electronic spectra support octahedral geometry around CoII. The [Co(L1)-(H2O)2] · 2H2O complex has the maximum activation energy and [Co(L3)(H2O)2] complex has the minimum activation energy. The order of stability constants of the CoII complexes with various ligands is due to their -donor abilities.  相似文献   

2.
Complexes of Cu(II) with N,N'-bis(3-carboxy-1-oxopropanyl)-1,2-ethylenediamine(C(10)H(16)N(2)O(6),L(1)), N,N'-bis(3-carboxy-1-oxopropanyl)-1,2-phenylenediamine(C(14)H(16)N(2)O(6),L(2)), N,N'-bis(2-carboxy-1-oxophenelenyl)-1,2-phenylenediamine(C(22)H(16)N(2)O(6),L(3)) and N,N'-bis(3-carboxy-1-oxoprop-2-enyl)-1,2-phenylenediamine(C(14)H(12)N(2)O(6),L(4)) have been prepared and characterised by elemental analyses, vibrational spectra, magnetic susceptibility measurements, ligand field spectra, EPR spectra, thermal studies and X-ray diffraction spectra. Vibrational spectra indicate coordination of amide and carboxylate oxygens of the ligands giving a MO(4) square planar chromophore. Ligand field and EPR spectra support square planar geometry around Cu(II). [Cu(L(1))] complex has the maximum activation energy and [Cu(L(3))] complex has the minimum activation energy.  相似文献   

3.
Nickel(II) complexes of reduced glutathione (GSH) of general composition Na[Ni(L)(X)]H(2)O, where H(2)L=GSH; X=NO(3)(-), SCN(-), CH(3)CO(2)(-), Cl(-) have been synthesized and characterized by elemental analysis, infrared spectra, electronic spectra, magnetic susceptibility measurements, thermal and X-ray powder diffraction studies. Infrared spectra indicate deprotonation and coordination of cysteinyl sulphur and carboxylate oxygen of glycine residue with nickel ions. It indicates the presence of water molecule in all the complexes which has been supported by TG/DTA. The thermal behavior of complexes shows that water molecule is removed in first step-followed removal of anions and then decomposition of the ligand molecule in subsequent steps. General mechanisms describing the decomposition of the solid complexes are suggested. Kinetic and thermodynamic parameters were computed from the thermal decomposition data. The room temperature magnetic moment values for all the complexes lie in the range of 2.2-2.4BM, indicating departure from spin only values due to second order Zeeman effect. The electronic spectra indicate planar coordination geometry for all the complexes. Crystal data for Na[Ni(L)(CH(3)CO(2)(-))]H(2)O: tetragonal, space group P4/m, a=8.2004A, b=8.2004A, c=16.0226A, V=1077.47A(3), Z=2. Crystal data for Na[Ni(L)(Cl(-))]H(2)O: cubic, space group Pm3, a=16.1055A, b=16.1055A, c=16.1055A, V=4178.38A(3), Z=6. Crystal data for Na[Ni(L)(NO(3)(-))]H(2)O: tetragonal, space group P4/m, a=7.2121A, b=7.2121A, c=12.0200A, V=625.22A(3), Z=2.  相似文献   

4.
Complexes of NiII with new ligands N′,N′′-bis(3-carboxy-1-oxoprop-2-enyl), 2-Amino-N-arylbenzamidine (C21H17N3O6), N′,N′′-bis(3-carboxy-1-oxopropanyl) 2-Amino-N-arylbenzamidine (C21H21N3O6) and N′,N′′-bis(3-carboxy-1- oxophenelenyl) 2-Amino-N-arylbenzamidine (C29H21N3O6) have been synthesized and characterized by elemental analyses, vibrational spectra, electronic spectra, TOF-mass spectra, magnetic susceptibility measurements, thermal studies and X-ray powder diffraction studies. Vibrational spectra indicate coordination of amide and carboxylate oxygen of the ligands along with two water molecules giving a MO6 weak field octahedral chromophore. Electronic spectra and magnetic susceptibility measurements reveal octahedral geometry for NiII complexes. The elemental analyses and mass spectral data have justified the ML complexes. Kinetic and thermodynamic parameters were computed from the thermal data using Coats and Redfern method, which confirm first order kinetics. The crystal data: C21H19N3O8 Ni is orthorhombic, space group Pmmm, a = b = 9.015360(Å), c = 10.554430(Å), V = 572.11A3; C21H23N3O8Ni is monoclinic, space group P2/m, a = 15.08206(Å), b = 5.358276(Å), c = 9.898351(Å), V = 671.58A3; C29H23N3O8Ni is tetragonal, space group P4/m, a = b = 6.328104(Å), c = 9.82213(Å), V = 393.33A3. Molecular structures of the complexes have been optimized by MM2 calculations and supported octahedral arrangements around Nickel(II) ions.  相似文献   

5.
The new tetradentate symmetrical (2R,2′S)-1,1′-piperazine-1,4-diyldipropane-2-thiol) (L1), (2S)-1-[bis(2-aminoethyl)amino]propan-2-ol) (L2), and 2-{(E)-[((1R,2S)-2-{[(1Z)-(2-hydroxy phenyl)methylene]amino}cyclohexyl)imino]methyl}phenol (L3) ligands were synthesized and characterized on the basis of FT-IR, 1H, 13C NMR, EI mass, and elemental analysis. Three commercially available ligands, (2,2′-[ethane-1,2-diylbis(thio)]diethanol (L4), 2,2′-dithiodiethanenamine (L5), and (2,2′-[ethane-1,2-diyldi(imino)] diethanol (L6), were also studied. Pt(II) complexes were characterized by FTIR, elemental analysis and thermal methods. Thermal behaviors of these complexes were investigated in the range 10–1000 °C. Magnetic properties were also studied, and the all complexes were found to be diamagnetic. The structures consist of the monomeric units in which the Pt(II) atoms exhibit square planar geometry. N,N′-bis(salicylidene)-1,2-cyclohexane has been synthesized and characterized by X-ray single crystal diffraction measurement. The ligand crystallizes in monoclinic crystal system and space group, Cc.  相似文献   

6.
Cobalt(II) tri-tert-butoxysilanethiolates with 2,5-dimethylpyridine, 3,4-dimethylpyridine and 3,5- dimethylpyridine co-ligands have been synthesized by reaction of bimetallic [Co{μ-SSi(O t Bu)3}{SSi(O t Bu)3}(NH3)]2 with the appropriate pyridines. The complexes were characterized by elemental analysis, single-crystal X-ray structure determination, IR and UV–Vis spectroscopy. These complexes are tetra- or penta-coordinated with CoN2S2 and CoNO2S2 cores, respectively.  相似文献   

7.
Cobalt(II) complexes of reduced glutathione (GSH) of general composition Na[Co(L)(X)].nH2O (where H2L = GSH; X = Cl-, NO3-, NCS-, CH3CO2-, HCO2-, ClO4- and n = 0-4) have been synthesized and characterised by elemental analyses, vibrational spectra, electronic spectra, magnetic susceptibility measurements, thermal studies and molecular modeling studies. Electronic spectra indicate planar geometry for all the complexes. Infrared spectra indicate the presence of H2O molecules (except perchlorate complex) in the complexes that has been supported by TG/DTA. The room temperature magnetic moment values for all complexes lie in the range of 2.60-2.80 BM range indicating departure from spin only values due to second order Zeeman effect. Thermal decomposition of all the complexes proceeds via first order kinetics. The Na[Co(L)(Cl)].2H2O complex has the minimum activation energy and Na[Co(L)(CH3CO2)].3H2O has the maximum activation energy. The molecular modeling calculation for energy minimization optimizes geometry of the metal complexes.  相似文献   

8.
Research on Chemical Intermediates - Herein we report spectroscopic, thermal, non-isothermal decomposition kinetics and theoretical studies of two mononuclear Ni(II)- and Cu(II)-complex of general...  相似文献   

9.
Co(II) complexes (1‐4) were prepared and characterized by elemental analyses, infrared spectra, spectral studies, magnetic susceptibility measurements, X‐ray diffraction analysis and thermogravimetric analysis (TGA). The X‐ray diffraction patterns of Co(II) complexes were observed many peaks which indicate the polycrystalline nature. The thermodynamic parameters were calculated by using Coats–Redfern and Horowitz–Metzger methods. The bond length, bond angle and quantum chemical parameters of the Co(II) complexes were studied and discussed. The Co(II) complexes were tested against various Gram‐positive bacteria, Gram‐negative bacteria and fungi. It was found that the Co(II) complex (1) has more antifungal activity than miconazole (antifungal standard drug) against P. italicum at all concentration. The Co(II) complex ( 2 ) has more antibacterial activity than the penicillin against K. pneumoniae at all concentration. The interaction between Co(II) complexes and calf thymus DNA show hypochromism effect. The relationship between the values of HOMO–LUMO energy gap (?E) and the values of intrinsic binding constant (Kb) is revealed increasing of HOMO–LUMO energy gap accompanied by the decrease of Kb.  相似文献   

10.
Cobalt(II) complexes of tetradentate Schiff bases of the type CoL [H2L=C20H16N2O2 (H2dsp), C21H18N2O2 (H2dst), C20H15N3O4 (H2ndsp) and C16H16N2O2 (H2salen)] have been synthesized and characterized by UV-visible, IR, and magnetic studies. Various thermodynamic parameters have been calculated for the decomposition step using TG/DTA. C20H14N2O2Co complex has the minimum and C16H14N2O2Co complex has the maximum activation energy.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
The synthesis, crystal structure, thermal analysis and spectroscopic studies of five zinc(II) complexes of formulae [Zn(Memal)(H2O)]n (1) and [Zn2(L)(Memal)2(H2O)2]n (2-5) [H2Memal = methylmalonic acid, and L = 4,4′-bipyridine (4,4′-bpy) (2), 1,2-bis(4-pyridyl)ethylene (bpe) (3), 1,2-bis(4-pyridyl)ethane (bpa) (4) and 4,4′-azobispyridine (azpy) (5)] are presented here. The crystal structure of 1 is a three-dimensional arrangement of zinc(II) cations interconnected by methylmalonate groups adopting the μ32OO’:κO”:κO”’ coordination mode to afford a rare (10,3)-d utp-network. The structures of the compounds 2-5 are also three-dimensional and they consist of corrugated square layers of methylmalonate-bridged zinc(II) ions which are pillared by bis-monodentate 4,4′-bpy (2), bpe (3), bpa (4) and azpy (5) ligands. The Memal ligand in 2-5 adopts the μ3OO′:κO′′:κO′′′ coordination mode. Each zinc(II) ion in 1-5 is six-coordinated with five (1)/four (2-5) methylmalonate-oxygen atoms, a water molecule (1-5) and a nitrogen atom from a L ligand (2-5) building distorted octahedral environments. The rod-like L co-ligands in 2-5 appear as useful tools to control the interlayer metal-metal separation, which covers the range 8.4311(5) Å (2) – 9.644(3) Å (5). The influence of the co-ligand on the fluorescence properties of this series of compounds has been analyzed and discussed by steady-state and time resolved spectroscopy on all five compounds in the solid state.  相似文献   

12.
Three dinuclear copper(II) complexes with the anti-inflammatory drug Fenoprofen [Hfen, 2-(3-phenoxyphenyl)propionic acid] and nitrogen donors of general formula [Cu2(fen)4(L)] n were prepared from [Cu2(fen)4(dmf)2]·2H2O (1) [dmf?=?N,N′-dimethylformamide; L?=?4,4′-bipyridine (2), pyrazine (3), and 2,5-dimethylpyrazine (4)]. The new complexes were characterized by chemical analysis, spectroscopic, and thermogravimetric techniques. Antioxidant properties of 1–4 were evaluated for superoxide-dismutase-mimic activity employing the XTT method. Complex 2 presented the highest antioxidant activity (IC50?=?0.260?µmol?L?1). Anti-inflammatory properties of 2 were evaluated employing carrageenan-induced paw edema in mice, revealing that the Fenoprofen–copper(II) complex containing 4,4′-bipyridine does not present enhanced anti-inflammatory activity compared to the uncomplexed parent drug Fenoprofen calcium salt.  相似文献   

13.
Three complexes were obtained during reactions of 6-amino-1-methyl-5-nitrosouracil, 6-methylamino-1-methyl-5-nitrosouracil and 6-methylamino-1-benzyl-5-nitrosouracil with K2PtCl4. The complexes were isolated in good yields as powdery precipitates and characterized through elemental analysis, infrared and 1H NMR spectroscopies, and thermal analysis. The pyrimidine bases easily substitute chloro ligands as a neutral monodentate ligand form. The exocyclic oxygen atoms are the probable binding sites rather than ring or exocyclic nitrogen atoms. trans Square planar structures were proposed in all cases.  相似文献   

14.
An interesting series of cobalt(II) complexes of the new ligands: 4[N-(benzalidene)amino]antipyrinethiosemicarbazone (BAAPTS), 4[N-(2′-hydroxy-benzalidene)amino]antipyrinethiosemicarbazone (HBAAPTS) and 4[N-(2′-hydroxy-1′-naphthalidene)amino]antipyrinethiosemicarbazone (HNAAPTS) were synthesized by reaction with Co(II) salts in ethanol. The general stoichiometry of the complexes was found to be [CoX2(H2O)(L)] and [Co(L)2](ClO4)2, where X = Cl, NO3, NCS or CH3COO and L = BAAPTS, HBAAPTS or HNAAPTS. The complexes were characterized by elemental analysis, molar conductivity measurement, molecular weight determination, magnetic moments at room temperature, infrared and electronic spectra. All the thiosemicarbazones behave as neutral tridentate (N, N, S) donor ligands. The conductivity measurements in PhNO2 solution indicated that the chloro, nitrato, thiocyanato and acetate complexes are essentially non-electrolytes, while the perchlorate complexes are 1:2 electrolytes. Thermogravimetric studies were performed for some representative complexes and the decomposition mechanism proposed. Antibacterial and antifungal properties of the ligands and their cobalt(II) complexes have also been examined and it has been observed that the complexes are more potent bactericides than the ligand.  相似文献   

15.
The reaction of [CrX3(thf)3] (X = Cl or Br) with the isometric triselenoethers MeC(CH2SeMe)3 and Se(CH2CH2CH2SeMe)2 (L) forms the very moisture sensitive [CrX3L] complexes. The macrocycle [16]aneSe4 (1,5,9,13-tetraselenacyclohexadecane) forms [CrX2([16]aneSe4)]PF6. The complexes have been characterized by analysis, IR and UV-visible spectroscopy and electrospray mass spectrometry. The UV-visible spectra have been analysed and the low 10Dq and large B values, are consistent with weak binding of the soft selenium ligands to the hard CrIII. Chromium K-edge EXAFS data has been recorded and analysed for the chromium chloride complexes to produce Cr---Se and Cr---Cl distances, which provide further strong evidence for weak CrIII-selenoether interactions.  相似文献   

16.
2-Dimethylaminoethanol (dmea) reacted with tetraaqua-bis(saccharinato)cobalt(II) and -zinc(II) in n-butanol to yield the new complexes cis-[Co(sac)2(dmea)2] (1), and cis-[Zn(sac)2(dmea)2] (2) (sac?=?saccharinate). The complexes were characterized by elemental analyses, IR spectroscopy, DTA-TG and X-ray crystallography. Both complexes are isomorphous and crystallize in the monoclinic space group P21/c. The cobalt(II) and zinc(II) ions are coordinated by two neutral dmea ligands and two sac anions in a distorted octahedral environment. The dmea ligand acts as a bidentate N, O donor through the amine N and hydroxyl O atoms, while the sac ligand exhibits non-equivalent coordination, behaving as an ambidentate ligand; one coordinates to the metal via the carbonyl oxygen atom, while the other is N-bonded. The packing of the molecules in the crystals of both complexes is achieved by aromatic π(sac)–π(sac) stacking interactions, C–H?·?π interactions and weak intermolecular C–H?·?O hydrogen bonds involving the methyl groups of dmea and the sulfonyl oxygen atoms of the sac ligands. IR and UV spectra and thermal analysis are in agreement with the crystal structures.  相似文献   

17.
The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.  相似文献   

18.
合成了两种新的钴(II)schiff碱配合物水杨醛L-甲硫氨酸-水合钴(II)(1), 邻香兰素L-甲硫氨酸-水合钴(II)(2)。通过元素分析、红外光谱、热分析等测试手段研究了配合物的性质, 并确定了配合物的组成。用气体吸收装置测定配合物在乙腈溶液中不同温度下的饱和吸氧量, 求得氧合反应的平衡常数及热力学参数, 同时探讨了温度和配体结构对配合物氧合性能的影响。用TG-DTG法研究了配合物的热稳定性及非等温热分解动力学, 并采用积分法和微分法相结合的方法,推断了两种配合物的第一步热分解反应机理, 得到了热分解反应动力学参数及其动力学方程。  相似文献   

19.
合成了两种新的钴(II)schiff碱配合物水杨醛L-甲硫氨酸-水合钴(II)(1), 邻香兰素L-甲硫氨酸-水合钴(II)(2)。通过元素分析、红外光谱、热分析等测试手段研究了配合物的性质, 并确定了配合物的组成。用气体吸收装置测定配合物在乙腈溶液中不同温度下的饱和吸氧量, 求得氧合反应的平衡常数及热力学参数, 同时探讨了温度和配体结构对配合物氧合性能的影响。用TG-DTG法研究了配合物的热稳定性及非等温热分解动力学, 并采用积分法和微分法相结合的方法,推断了两种配合物的第一步热分解反应机理, 得到了热分解反应动力学参数及其动力学方程。  相似文献   

20.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号