首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we construct a new class of finite groups whose common divisor graphs are complete graphs, while there is no prime dividing all the nontrivial degrees.  相似文献   

2.
3.
Selçuk Kayacan 《代数通讯》2018,46(4):1492-1505
The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if HK≠1 where 1 denotes the trivial subgroup of G. In this paper, we classify finite solvable groups whose intersection graphs are not 2-connected and finite nilpotent groups whose intersection graphs are not 3-connected. Our methods are elementary.  相似文献   

4.
In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3-(d-3)x2-(3d-2)x-2=0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if the second largest eigenvalue of G is less than , then G is 3-edge-connected.  相似文献   

5.
The third edge-connectivity λ3(G) of a graph G is defined as the minimum cardinality over all sets of edges, if any, whose deletion disconnects G and each component of the resulting graph has at least 3 vertices. An upper bound has been established for λ3(G) whenever λ3(G) is well-defined. This paper first introduces two combinatorial optimization concepts, that is, maximality and superiority, of λ3(G), and then proves the Ore type sufficient conditions for G to be maximally and super third edge-connected. These concepts and results are useful in network reliability analysis.  相似文献   

6.
This paper is devoted to the lower bounds on the maximum genus of graphs. A simple statement of our results in this paper can be expressed in the following form:

Let G be a k-edge-connected graph with minimum degree δ, for each positive integer k(3), there exists a non-decreasing function f(δ) such that the maximum genus γM(G) of G satisfies the relation γM(G)f(δ)β(G), and furthermore that limδ→∞f(δ)=1/2, where β(G)=|E(G)|-|V(G)|+1 is the cycle rank of G.

The result shows that lower bounds of the maximum genus of graphs with any given connectivity become larger and larger as their minimum degree increases, and complements recent results of several authors.  相似文献   


7.
Given an undirected multigraph G=(V,E), a family W of sets WV of vertices (areas), and a requirement function r:WZ+ (where Z+ is the set of nonnegative integers), we consider the problem of augmenting G by the smallest number of new edges so that the resulting graph has at least r(W) edge-disjoint paths between v and W for every pair of a vertex vV and an area WW. So far this problem was shown to be NP-hard in the uniform case of r(W)=1 for each WW, and polynomially solvable in the uniform case of r(W)=r?2 for each WW. In this paper, we show that the problem can be solved in time, even if r(W)?2 holds for each WW, where n=|V|, m=|{{u,v}|(u,v)∈E}|, p=|W|, and r*=max{r(W)∣WW}.  相似文献   

8.
9.
10.
The product graph Gm*Gp of two given graphs Gm and Gp was defined by Bermond et al. [Large graphs with given degree and diameter II, J. Combin. Theory Ser. B 36 (1984) 32-48]. For this kind of graphs we provide bounds for two connectivity parameters (λ and λ, edge-connectivity and restricted edge-connectivity, respectively), and state sufficient conditions to guarantee optimal values of these parameters. Moreover, we compare our results with other previous related ones for permutation graphs and cartesian product graphs, obtaining several extensions and improvements. In this regard, for any two connected graphs Gm, Gp of minimum degrees δ(Gm), δ(Gp), respectively, we show that λ(Gm*Gp) is lower bounded by both δ(Gm)+λ(Gp) and δ(Gp)+λ(Gm), an improvement of what is known for the edge-connectivity of Gm×Gp.  相似文献   

11.
12.
We prove that in a graph of order n and minimum degree d, the mean distance μ must satisfy . This asymptotically confirms, and improves, a conjecture of the computer program GRAFFITI. The result is close to optimal; examples show that for any d, μ may be larger than n/(d + 1). © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 95–99, 1997  相似文献   

13.
14.
15.
The old well-known result of Chartrand, Kaugars and Lick says that every k-connected graph G with minimum degree at least 3k/2 has a vertex v such that Gv is still k-connected. In this paper, we consider a generalization of the above result [G. Chartrand, A. Kaigars, D.R. Lick, Critically n-connected graphs, Proc. Amer. Math. Soc. 32 (1972) 63–68]. We prove the following result:Suppose G is a k-connected graph with minimum degree at least 3k/2+2. Then G has an edge e such that GV(e) is still k-connected.The bound on the minimum degree is essentially best possible.  相似文献   

16.
Bing Wang 《Discrete Mathematics》2009,309(13):4555-4563
A cyclic edge-cut of a graph G is an edge set, the removal of which separates two cycles. If G has a cyclic edge-cut, then it is said to be cyclically separable. For a cyclically separable graph G, the cyclic edge-connectivity cλ(G) is the cardinality of a minimum cyclic edge-cut of G. In this paper, we first prove that for any cyclically separable graph G, , where ω(X) is the number of edges with one end in X and the other end in V(G)?X. A cyclically separable graph G with cλ(G)=ζ(G) is said to be cyclically optimal. The main results in this paper are: any connected k-regular vertex-transitive graph with k≥4 and girth at least 5 is cyclically optimal; any connected edge-transitive graph with minimum degree at least 4 and order at least 6 is cyclically optimal.  相似文献   

17.
The power graph of a group G is a graph with vertex set G and two distinct vertices are adjacent if and only if one is an integral power of the other. In this paper we find both upper and lower bounds for the spectral radius of power graph of cyclic group Cn and characterize the graphs for which these bounds are extremal. Further we compute spectra of power graphs of dihedral group D2n and dicyclic group Q4n partially and give bounds for the spectral radii of these graphs.  相似文献   

18.
Let G be the circuit graph of any connected matroid M with minimum degree 5(G). It is proved that its connectivity κ(G) ≥2|E(M) - B(M)| - 2. Therefore 5(G) ≥ 2|E(M) - B(M)| - 2 and this bound is the best possible in some sense.  相似文献   

19.
20.
In this paper we investigate locally primitive Cayley graphs of finite nonabelian simple groups. First, we prove that, for any valency d for which the Weiss conjecture holds (for example, d?20 or d is a prime number by Conder, Li and Praeger (2000) [1]), there exists a finite list of groups such that if G is a finite nonabelian simple group not in this list, then every locally primitive Cayley graph of valency d on G is normal. Next we construct an infinite family of p-valent non-normal locally primitive Cayley graph of the alternating group for all prime p?5. Finally, we consider locally primitive Cayley graphs of finite simple groups with valency 5 and determine all possible candidates of finite nonabelian simple groups G such that the Cayley graph Cay(G,S) might be non-normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号