首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In polymorphonuclear leukocytes phenylacetaldehyde promotes an intracellular O2 consuming process in which myeloperoxidase participates. The reaction is accompanied by lipid peroxidation as shown by both malondialdehyde formation and biphasic light emission. The lipid peroxidation appears to be induced by intracellularly generated triplet benzaldehyde. When chlorophyll-a is solubilized in the leukocytes, biphasic emission is observed in the red, demonstrating that the excited species formed in lipid peroxidation transfer their energy to chlorophylls bound to the cell. The energy transfer process is efficient and does not occur by radiative transfer.  相似文献   

2.
Abstract— Mesophyll and bundle sheath chloroplasts isolated from Atriplex repanda cells promote oxygen consumption by isobutyraldehyde or phenylacetaldehyde. In all cases, a red emission and reduction of tetrazolium blue was observed. Addition of horseradish peroxidase greatly increases the reduction of the dye. In the presence of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea, the reduction of the Hill acceptor was fully suppressed. This suppression was abolished when 2, 6-dichlorophenolindophenol and ascorbate were added to the systems. These results indicate that, in mesophyll and bundle sheath chloroplasts, chlorophylls can be efficiently excited in the absence of light and an electron flow through the photosystems can be promoted.  相似文献   

3.
Abstract Chloroplasts promote a slow oxygen consumption by phenylacetaldehyde. The latter elicits a sustained red emission and induces reduction of tetrazolium blue. Addition of horseradish peroxidase greatly increases both O2 uptake and the initial light emission, but has little or no effect upon the reduction of tetrazolium blue. These results indicate that chlorophylls in chloroplasts can be efficiently excited in the absence of light.  相似文献   

4.
REGULATION OF CHLOROPLAST DEVELOPMENT BY RED AND BLUE LIGHT   总被引:3,自引:0,他引:3  
There are specific differences between red and blue light greening of etiolated seedlings of Hordevm vulgare L. Blue light results in a different prenyl lipid composition of chloroplast as compared to red light of equal quanta density. This is documented by a much higher prenylquinone content, higher chlorophyll a/b ratios, and lower values for the ratio xanthophylls to carotenes (x/c). The photosynthetic activity of “blue light” chloroplasts (Hill reaction) is higher than that of “red light” chloroplasts. These differences in prenylquinone composition and Hill-activity are associated with a different ultrastructure of chloroplasts. “Red light” chloroplasts exhibit a much higher grana content than “blue light” chloroplasts. The difference in thylakoid composition, photosynthetic activity and chloroplast structure found between blue and red light greening are similar to those found between sun and shade leaves and those between plants grown under high and low light intensities.  相似文献   

5.
Abstract— Quercetin, quercitrin and rutin suppressed lipid photoperoxidation in spinach chloroplasts in the presence of 100 μ M carbonylcyanide m -chlorophenylhydrazone (CCCP) or 100 μ M methyl viologen (MV). Fifty percent inhibition of lipid peroxidation by quercetin was observed between 30 and 50 μ M . Concentrations of quercetin and rutin higher than 100 μ M were required to obtain 50% inhibition. Ouercitrin was more effective than rutin in the suppression of lipid photoperoxidation.
Photooxidation of the flavonols by chloroplasts in the presence of MV was suppressed by superoxide dismutase (SOD) more than 90%, and the rates of the oxidation decreased in order of quercetin, quer citrin and rutin suggesting that the reactivity of the flavonols with O2-decreased in that order. The photooxidation of the flavonols by CCCP-poisoned chloroplasts was partially suppressed by SOD. Radicals generated in the course of lauroyl peroxide degradation also oxidized the flavonols and the oxidation was insensitive to SOD. In these experiments, oxidation rate of quercetin was faster than those of its glycosides. The results obtained suggest that flavonols can function as antioxidants in chloroplasts by scavenging both O2-and the radicals formed during lipid peroxidation.  相似文献   

6.
Abstract. The aerobic oxidation of saturated long chain fatty acids to the lower aldehyde and CO2 catalyzed by the α-oxidase system of young leaves from germinating Pisum sativum results in concomitant excitation of the chloroplasts or/and fractions present in the α-oxidase preparation. The excitation is attested to by both chlorophyll emission and Hill activity. This is the first case of photobiochemistry without light within a natural system.  相似文献   

7.
Abstract —Chlorophyll- a enhances the photoemission from the microsomeltert-butyl hydroperoxide system without affecting the rates of O2 uptake and lipid peroxidation. This photoemission, due to energy transfer from triplet carbonyls to microsome-bound chlorophyll- a , shows that microsomal membranes produce a significant amount of excited triplet carbonyls during lipid peroxidation.  相似文献   

8.
During the aerobic reaction of soybean lipoxygenase with polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) oxygen uptake is followed by excited carbonyl photoemission. The chemiluminescence yield of phi cl = 10(-10) photons/O2 molecule consumed is enhanced 2-3 orders of magnitude by the carbonyl sensitizers 9,10-dibromo-anthracene-2-sulfonate (kET tau 0 = 10(4) M-1; phi cl = 10(-8) photons/O2) and chlorophyll-a (kET tau 0 = 10(6) M-1; phi cl = 10(-7) photons/O2), respectively. alpha,beta-Saturated triplet excited carbonyls as from 1,2-dioxetane cleavage are discussed to arise from a secondary peroxidase/oxidase reaction with aldehydes formed in the course of enzymic lipid peroxidation. When 1 mM glutathione is added to the aerobic lipoxygenase/arachidonate reaction, carbonyl emission (375-455 nm) is replaced by intense red bands (630-645 nm and 695-715 nm) resembling the characteristic spectrum of (1 delta g)O2-singlet oxygen dimol-emission. The quantum yield (phi cl = 10(-8) photons/O2) remains unaffected by chlorophyll indicating that the red emission is independent of excited carbonyls. The effect of GSH is attributed to dioxetane interception and subsequent glutathione peroxidation generating 1O2 by electron transfer from the superoxide anion radical to a peroxysulfenyl radical.  相似文献   

9.
Abstract— Measurements were made of the 3.7 msec delayed light emission of chloroplasts treated with a variety of agents which affect the rate of electron transport (Hill reaction) or photosynthetic phosphorylation. The presence of the electron acceptors ferricyanide or pyocyanine increased delayed light emission. Inhibitors of electron transport (3-(3,4-dichlorophenyl)-1, -1-dimethylurea or 1,10(ortho)-penanthroline) inhibited delayed light emission. The addition of a phosphate acceptor system inhibited delayed light emission. This inhibition was reversed by inhibitors of the phosphorylation reaction, e.g. Dio-9 or phlorizin. From these results it was concluded that the 3.7 msec delayed light emission probably occurs as a result of back reactions of intermediates in the coupled electron transport and photosynthetic phosphorylation systems.  相似文献   

10.
Abstract— Oxygenated, stationary phase cultures of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe emit weak luminescence, most of which lies at wavelengths longer than 450 nm. Anaerobic cultures emit no detectable luminescence. The blue-green component of the emission was attributed to excited carbonyl groups and the more intense red component was attributed to excited singlet 02-02 dimers, both species arising from the decomposition of lipid peroxides. The higher ratio of blue:red emission in S. pombe compared with S. cerevisiae was attributed to the higher proportion of unsaturated lipids in the former yeast.  相似文献   

11.
Abstract— Continuous blue light irradiation of resealed erythrocyte ghosts at 37°C in the presence of uroporphyrin or protoporphyrin results in 1O2-mediated (azide inhibitable) lipid peroxidation and membrane lysis. Lipid peroxidation was assessed by thiobarbituric acid reactivity and by quantitation of total hydroperoxides, while lysis was measured in terms of trappedglucose–6-P release. Low concentrations of ascorbate, AH- (e.g. 0.5 m M ). present at the start of irradiation, significantly enhanced the rates of lysis and peroxidation, whereas relatively high concentrations of AH- (e.g. 15 m M ) inhibited both processes. By way of contrast. AH- produced only a dose-dependent inhibition of the photoinactivation of lysozyme, added as an extramembranous target. No significant AH-induced lipid peroxidation was observed in dark or light controls, plus porphyrin or minus porphyrin, respectively. Stimulation of peroxidation and lysis by low levels of AH- was enhanced by added Fe(III), abolished by EDTA. but unaffected by catalase or superoxide dismutase. A plausible explanation for these results is as follows. At low concentrations of AH- prooxidant activity is favored. Redox metal-mediated breakdown of photoperoxides occurs, which tends to amplify lipid peroxidation. Neither O2- nor H2O2 appears to be involved. At significantly high concentrations, AH- acts predominantly as an antioxidant by intercepting 1O2 and/or sensitizer triplet, or by scavenging free radical intermediates of lipid peroxidation.  相似文献   

12.
Abstract. The delayed light emission decay rate (up to 120 μs) and the rise in chlorophyll a fluorescence yield (from 3 to 35 μs) in isolated chloroplasts from several species, following a saturating 10 ns flash, are temperature independent in the 0–35°C range. However, delayed light in the 120–340 μs range is temperature dependent. Arrhenius plots of the exponential decay constants are: (a) linear for lettuce and pea chloroplasts but discontinuous for bush bean (12–17°C) and spinach (12–20°C) chloroplasts; (b) unaffected by 3-(3,4 dichlorophenyl)-1,1-dimethylurea (inhibitor of electron flow), gramicidin D (which eliminates light-induced membrane potential) and glutaraldehyde fixation (which stops gross structural changes).
The discontinuities, noted above for bush bean and spinach chloroplasts, are correlated with abrupt changes in (a) the thylakoid membrane lipid fluidity (monitored by EPR spectra of 12 nixtroxide stearate, 12NS) and (b) the fluidity of extracted lipids (monitored by differential calorimetry and EPR spectra of 12 NS). However, no such discontinuity was observed in (a) chlorophyll a fluorescence intensity of thylakoids and (b) fluorescence of tryptophan residues of delipidated chloroplasts.
Microsecond delayed light is linearly dependent on light intensity at flash intensities as low as one quantum per 2 times 104 chlorophyll molecules. We suggest that this delayed light could originate from a one quantum process in agreement with the hypothesis that recombination of primary charges leads to this light emission. A working hypothesis for the energy levels of Photosystem II components is proposed involving a charge stabilization step on the primary acceptor side, which is in a lipid environment.
Finally, the redox potential of P680 (the reaction center for chlorophyll of system II) is calculated to be close to 1.0–1.3 V.  相似文献   

13.
THE ROLE OF SUPEROXIDE AND SINGLET OXYGEN IN LIPID PEROXIDATION   总被引:9,自引:0,他引:9  
Abstract— An investigation into the mechanism of lipid peroxidation catalyzed by xanthine oxidase showed a dependence upon superoxide, singlet oxygen and adenosine 5'-diphosphate chelated iron (ADP-Fe3+). In the absence of ADP-Fe3+ or in the presence of superoxide dismutase there is complete inhibition of enzymatic peroxidation. Initiation of peroxidation likely occurs through an ADP-perferryl ion complex formed by ADP-Fe3+ and superoxide. Use of the singlet oxygen trapping agent 2,5-diphenylfuran showed that singlet oxygen does not participate in the initiation of peroxidation but rather in the propagation of peroxidation. The mechanisms of NADPH-cytochrome P450 reductase-catalyzed and ADP-Fe2+ catalyzed lipid peroxidation parallel that of xanthine oxidase in that initiation occurs through a superoxide dismutase-sensitive reaction and that singlet oxygen is present during propagation of lipid peroxidation.  相似文献   

14.
Photoinhibition of the light-regulated key enzymes of the photosynthetic carbon reduction (PCR) cycle was investigated using chloroplasts isolated from spinach leaves. Light quality dependence of the light-induced activity change (activation or inactivation) of key PCR enzymes in situ demonstrated that, while light activation is promoted mainly by red light (Λ.> 600 nm), inactivation takes place largely in the region of blue light (Λ < 500 nm). Inactivation was suppressed by a lipid soluble singlet oxygen (1O2,1Δg) quencher. When “stromal protein” was subjected to a severe photoinhibitory treatment, no significant loss of activity was observed for any PCR enzyme assayed. However, the inclusion of thylakoids in the photolysis system resulted in a substantial inactivation of the enzymes; this inactivation was significantly diminished in the presence of imidazole and enhanced to some extent by a partial deuteration of medium. In contrast, superoxide dismutase did not exert any effect. The blue light-induced inactivation of the enzymes was remarkably decreased in the presence of thylakoids whose Fe-S centers were destroyed. The results obtained in this study suggest that photoinactivation of the PCR enzymes in situ is mediated mainly by 1O2, which is photoproduced primarily by the Fe-S centers of thylakoids and diffuses into the stroma.  相似文献   

15.
Abstract— Exposure of thylakoid membranes of green plants to high temperature promotes the appearance of free radicals resulting in a thermoluminesccnce (TL) band peaking around 75°C. The occurrence of this band with the same intensity in prcilluminated and in dark-adapted samples demonstrates that, contrary to several other TL bands, it is not a result of charge recombination. The high temperature TL band is oxygen dependent. Parallel to TL emission singlet oxygen is formed, as demonstrated by spin trapping EPR measurements and by the decrease of TL intensity in the presencc of sodium-azide, a singlet oxygen scavenger.
We suggest that the 75°C TL band is a result of a temperature-enhanced interaction between molecular oxygen and the photosynthetic membrane, possibly involving lipid peroxidation. The spectral maximum of the emission (around 720 nm) implics that light emission occurs upon energy transfer from an excited product to chlorophyll molecules destablized from pigment-protein complexes.  相似文献   

16.
—Enzyme-generated triplet acetone and triplet indole-3-aldehyde transfer energy very efficiently to chloroplasts, as indicated by the intensity of the sensitized red emission that is observed. The intermediacy of excited species of oxygen (1O2, O2, HO) has been excluded. Our results open the way for investigating energy transfer in architecturally organized systems in the absence of light.  相似文献   

17.
Excised roots of pea seedlings (Pisum sativum var. “Alaska”) cultured in a synthetic medium under sterile conditions exhibit differentiation of functional chloroplasts from leucoplasts when irradiated with blue light (350–550 nm). This transition is a relatively slow process; nevertheless, the chloroplasts formed in blue light compare very well to leaf chloroplasts as far as microstructure and photosyn-thetic activities are concerned. Apparently certain activities of the apical meristem are mandatory in bringing about a transition from leucoplasts to chloroplasts in blue light. After short-time labelling with [jH]uridine the synthesis of plastid ribosomal RNA (rRNA) was studied either during irradiation with blue and red light (600–700 nm), respectively, or in darkness. Polyacrylamide gel electrophoresis revealed that in blue light the synthesis of specific chloroplast rRNA species with molecular weights of 1.1 × 106 and 0.56 × 106 daltons is markedly stimulated. In contrast, in dark cultured roots these RNA species were synthesized to a limited extent only whereas the cytoplasmic rRNA species of 1.3 × 106 and 0.7 × 106 daltons molecular weight were preferentially formed. The same holds true for roots irradiated with red light.  相似文献   

18.
Abstract The a-oxidase activity of higher plants acting on long chain fatty acids generates the lower aldehyde in the ground state; however if chlorophyll or chioroplasts are present the chlorophylls are excited most likely by a chemically initiated electron exchange (CIEEL) luminescence process with the putative a-peroxylactone intermediate. When the aldehyde is substituted for the acid, the lower aldehyde appears in the triplet state. The chiral discrimination observed in the quenching by D- and L-tryptophan of the chlorophyll sensitized emission indicates that the triplet aldehyde is generated within the enzymatic preparation and transfers energy while still bound to the enzyme.
Chlorophylls in chioroplasts are excited by addition of a long chain fatty acid or aldehyde. The mechanism, however, is unknown.  相似文献   

19.
We studied the influence of low-intensity red light on restoration of isolated heart contractility, on lipid peroxidation processes and a state of the superoxide dismutase (SOD) activity in myocardial tissues of isolated hearts. It was found that after ischemia modeled and perfusion restored the light illumination results in acceleration of myocardial contractility recovery, rising of the SOD activity and reduction in the amount of molecular products of lipid peroxidation.  相似文献   

20.
Headspace solid-phase micro-extraction (HS-SPME) and ultrasonic solvent extraction (USE) were used for red clover honey volatiles extraction. The extracts were analysed using gas chromatography and mass spectrometry (GC-MS). Lilac aldehyde isomers dominated in the headspace (individual range from 7.6 % to 21.4 %) followed by phenylacetaldehyde (10.1–31.2 %) and benzaldehyde (7.0–15.7 %). Higher aliphatic alcohols and hydrocarbons were the predominant constituents of the honey extracts. The honey and its extracts exhibited rather weak anti-radical activity (DPPH assay) and total antioxidant activity (FRAP assay). On the other hand, the honey’s inhibitive properties towards the corrosion of AA 2017A alloy in NaCl solution (potentiodynamic polarisation and potentiostatic pulse measurements) revealed the honey to be a very good anodic inhibitor (efficiency up to 76 %) while the honey extracts (USE) showed better inhibition efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号