首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

2.
Five kinds of side chain liquid crystalline polymers with a chiral component in the pendant group were synthesized and characterized by GPC, polarizing microscopy, DSC, X-ray diffraction ano Dielectric Relaxation Spectroscopy. The liquid crystalline behaviour of the polymers is affected by the length of flexible spacer, which links the mesogenic side chain to the polymer backbone and mesogenic moiety. The characteristic of smectic phase is observed for all the polymers.  相似文献   

3.
Two homologous series of flexible main chain liquid crystalline polyesters with isomeric mesogenic groups containing conjugated double bonds, were synthesized and studied by differential scanning calorimetry and optical microscopy. One series (S1) has the p-phenylene-diacryloyloxydibenzoyl moiety as a mesogenic unit. The other (S2) has the terephtaloyl dioxydicinnamoyl moiety as a mesogenic unit. The reactivity of the conjugated double bonds of the p-phenylenediacryloxy unit, at the temperature of mesophase formation, impedes the stability of liquid crystalline mesophases of polymers of series (S1). Two low molecular weight analogues of polymers were also prepared and their properties compared with those of polymers of similar structure. The two model compounds form stable smectic mesophases over a wide range of temperatures, which shows the high mesomorphogenic ability of both mesogenic units.  相似文献   

4.
设计合成了溴烷基(对硝基偶氮苯基)醚■和含硝基偶氮苯的丙烯酸酯■两组化合物;用自由基聚合和化学改性两种方法合成了含硝基偶氮苯侧基的丙烯酸酯液晶聚合物,用DSC,偏光显微镜和x-射线衍射等方法表征了聚合物的相行为。  相似文献   

5.
A homologous series of main‐chain thermotropic liquid‐crystalline polyesters containing rigid biphenyl mesogen and flexible methylene spacers were synthesized with the AB‐type self‐polycondensation approach. The polyesters were characterized with 1H NMR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, polarized light optical microscopy, and X‐ray diffraction. These polyesters, containing trimethylene spacers on the acid side and various spacers on the alcohol side of the biphenyl mesogen, showed an odd–even effect in the transition temperatures and mesophase type. The even members showed higher transition temperatures than the odd ones. A normal smectic mesophase was observed for the even members, whereas the odd‐membered counterparts exhibited a tilted smectic mesophase. To study the effect of connectivity, the mesophase characteristics of these polyesters were compared with those of the isomeric AB‐type polyesters without any methylene spacer on the acid side of the biphenyl moiety. The mesophase characteristics were insensitive to whether the mesogen was connected to a carboxyl unit or a methylene unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2734–2746, 2004  相似文献   

6.
刚性链侧链型液晶高分子合成与研究   总被引:2,自引:0,他引:2  
以自由基聚合方法,合成了一系列含有3个苯环通过酯键相联的液晶性单体及其聚合物,这类刚性液晶基元不通过柔性间隔基而直接竖挂在聚丙烯酸酯大分子主链上,具有很高的Tg·DSC及偏光显微镜结果表明,所有的单体和聚合物均为向列型热致性液晶。  相似文献   

7.
以端酰氯基团的热致液晶共聚酯HTH 6和端酚羟基的聚碳酸酯(PC)齐聚物为原料,通过溶液缩聚法制备了含PC和HTH 6的嵌段共聚物,并用IR、POM、DSC、WAXD等手段对共聚物结构、热行为和结晶行为进了表征.DSC和POM结果证明这些嵌段共聚物都属向列型热致性液晶.在280℃以下的温度范围内无相分离,而在较高温度(>280℃)为两相结构.共聚物的结晶结构与HTH 6相同,结晶度随HTH 6含量增加而增加,结晶速度也受到PC含量的影响.  相似文献   

8.
Three series of nematogens with a terminal p-nitrophenyl group linked with biphenyl groups via flexible spacers were synthesised and their transitional properties were studied by means of differential scanning calorimetry (DSC) and polarising microscopy (POM). The nematic–isotropic transition temperature and the associated entropy change showed an odd–even effect as the length of the spacers was varied, in which the even members exhibited higher values. Such an odd–even effect was in consistency with the feature of liquid crystal dimers and trimers. On the basis of these data, it seemed reasonable to assume that the terminal p-nitrophenyl group played a role of mesogen in the nematic liquid crystal. The p-nitrophenyl group may work as a mesogen as a result of the interaction with the biphenyl mesogens. The mesogenic behaviour of the terminal p-nitrophenyl group is explained on the basis of neighbouring group effect.  相似文献   

9.
Polyesters consisting of substituted aromatic type Schiff base mesogenic unit andpolymethylene spacers were synthesized and their thermal transitions and liquid crystallineproperties were studied. The liquid crystalline behaviour has been characterized by differentialscanning calorimetry (DSC) and optical polarizing microscopy. Structural broadening bysubstitution of methoxy group in 2, 2" positions of the mesogenic core produce polymers withlower transition temperatures. Polymers synthesized from ortho and meta substituted phenylenediamine did not form a liquid crystal phase.  相似文献   

10.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated mesogens onto the emeraldine form of polyaniline. Firsty three liquid crystalline molecules containing biphenyl units were synthesized. These mesogenic molecules are named as: 6‐bromo‐ (4‐hexyloxy‐biphenyl‐4′‐oxy) hexane (C6? C6Br), 5‐bromo‐(4‐hexyloxy‐biphenyl‐4′‐oxy) pentane (C6? C5Br), 6‐bromo‐(4‐octyloxy‐biphenyl‐4′‐oxy) hexane (C8? C6Br). Differential scanning calorimetry (DSC) in combination with polarizing optical microscopy (POM) were used to investigate the thermal properties of them. Optical microscopy showed focal conic texture characteristic of the Smectic A phase for (C6? C5Br) and (C8? C6Br). For (C6? C6? Br) smectic phase was determined. DSC experiments were also found in accord with mesophase formation. For the synthesis of N‐substituted polyaniline with these mesogen molecules, the emeraldine base polyaniline was reacted with BuLi to produce the N‐anionic polyaniline and then deprotonated polyaniline was reacted with bromine‐end mesogen to prepare mesogen‐substituted polyaniline through N‐substitution reaction. The degree of N‐substitution can be controlled by adjusting the molar feed ratio of mesogen to the number of repeat units of PANi. The microstructure and compositions of obtained polymers were characterized by FT‐IR, elemental analysis, DSC, and scanning electron microscopy (SEM). The cyclicvoltammetry show that the electroactivity of N‐substituted polyaniline is strongly dependent on the degree of N‐grafting. The solubility of mesogen‐substituted polyaniline in common organic solvents such as THF and chloroform was improved by increasing the degree of N‐substitution and also the samples are partially soluble in xylene. Liquid crystalline behavior of mesogen‐substituted polyanilines was investigated via POM, but no mesophase was observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A series of siloxane-based liquid crystalline elastomers containing biphenyl benzoate mesogenic units and ionic Brilliant Yellow moieties was synthesized. The chemical structures and liquid crystalline properties of the samples were characterized by FTIR, 1H NMR, DSC, POM and XRD. The effective crosslink density of the ionic elastomers was determined by swelling experiments in organic/buffer mixtures. All the polymers displayed a smectic mesophase. It was shown that the glass transition and melting point temperatures of the polymers increased slightly with increasing content of ionic and mesogenic groups in the polymers, while the liquid crystal mesophase region decrease slightly.  相似文献   

12.
新型酯类液晶环氧预聚物的合成与表征   总被引:4,自引:0,他引:4  
液晶高分子作为高分子学科的一个组成部分 ,已经取得令人瞩目的成就 ,在热塑性液晶聚合物方面已经进行卓有成效的工作 .随着高性能复合材料的发展 ,热固性液晶聚合物逐步引起人们的注意[1].液晶环氧树脂是液晶热固体研究中颇引人注目的一种 .环氧化合物根据所含液晶基元不同可以分为酯类、联苯类、α 甲基二乙烯类和亚甲胺类等[2 8],其中酯类环氧化合物多采用过氧酸部分氧化法制得[2 4],虽然其产物结构比较明确 ,但是合成步骤较多 ,难度较大 ,产率低 .考虑到工业上使用环氧化合物大多为齐聚物的混合物 ,而不是结构单一的低分子化合物 ,本文…  相似文献   

13.
Main chain discotic liquid crystalline polymers consisting of triphenylene-based units and alkyl spacers (C8, C10 and C12), connected by ester linkages in the 3- and 6-positions of triphenylene, have been synthesized and their mesomorphic properties were studied by DSC, polarizing optical microscopy and X-ray diffraction. It was found that these polymers exhibit a hexagonal columnar (Col h ) mesophase with intracolumnar order over a wide temperature range. The clearing temperature decreases on increasing the spacer length. It was found that the clearing temperatures are rather higher than that of the corresponding triphenylene monomer having six hexyloxy chains. These polymers form an ordered columnar mesophase, while the corresponding monomeric mesogen shows a disordered columnar phase. In the polymeric system, the fluctuations of the disc-like units in the mesophase are restricted by the connection of the mesogenic units, which stabilizes the columnar mesophase.  相似文献   

14.
Nine polymers with kinked aromatic structures in the main chain and biphenylene‐type mesogenic groups in the side chain were synthesized by the polyaddition of bis(epoxide)s and thio‐ and O‐esters. Tetrabutylphosphonium chloride and tetraphenylphosphonium chloride effectively catalyzed the polymerization. The thermal behavior of the polymers was measured by DSC and polarizing optical microscopy. The effect of annealing time on the degree of crystallization was investigated by DSC analysis. Polymers containing 100% of the kinked aromatic groups and 1,3‐propylene glycol in the main chain were amorphous. However, when half of the main‐chain aromatic moieties were composed of kinked groups and the other half of the aromatics were linear rodlike groups, the polymers were crystalline. The incorporation of kinked groups into the main chain of side‐chain liquid‐crystalline polymers suppressed the formation of liquid crystallinity. The polymer with mesogenic aromatic structures in both the main chain and the side chain was capable of forming a liquid‐crystalline phase. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 988–998, 2000  相似文献   

15.
《Liquid crystals》1997,22(6):669-677
The synthesis of side chain liquid crystalline polysiloxanes containing oligooxyethylene spacers and ( S )-2-methylbutyl 4-\[(4-oxybiphenyl-4-yl)carbonyloxy]-3-fluorobenzoate mesogenic side groups is presented. Differential scanning calorimetry, optical polarizing microscopy and X-ray diffraction measurements reveal liquid crystalline properties for all synthesized monomers and polymers. All three precursor olefinic monomers reveal cholesteric and smectic A phases. The olefinic monomer which contains two oligooxyethylene units in the spacer is the only one which reveals a twist grain boundary A phase and a blue phase, besides the cholesteric and smectic A phases. All three polysiloxanes present enantiotropic smectic A and chiral smectic C phases. The mesomorphic behaviours of the monomers and polymers are compared with those of the corresponding monomers and polymers without the lateral fluoro substituent. The results seem to demonstrate that incorporating a lateral fluoro substituent in the mesogenic cores of the monomers affects not only the mesophase thermal stability, but also the nature of the mesophases formed. However, incorporating a lateral fluoro substituent in the mesogenic cores of the polymers affects only the thermal stability of the mesophases formed. The lateral fluoro substituent has a more profound effect on the mesomorphic behaviour for the monomers than that for the polymers.  相似文献   

16.
A novel liquid crystalline dendrimer with peripheral mesogenic units was successfully prepared. Azo-reaction and Williamson synthesis were employed in the preparation of the mesogenic unit 4-[4-(6-hydroxyhexyloxy)-phenylazo]nitrobenzene (M-NO2). A terminal Si-Cl functional carbosilane dendrimer based on pentaerythritol was used as dendritic scaffold and subsequently functionalized with the aforementioned groups. Investigation of the liquid crystalline properties of the mesogen-functionalized dendrimer PCSi-IG-NO2 by polarizing optical microscopy, DSC, and X-ray diffraction showed that it exhibits smectic E (SE) phase, different from the corresponding mesogenic unit, which shows nematic phase. Furthermore, the temperatures of both the melting point and the clearing point of the mesogen-functionalized dendrimer decrease, and the temperature region of the SE phase is wider than that of the nematic phase.  相似文献   

17.
A novel liquid‐crystalline epoxy resin combining biphenyl and aromatic ester‐type mesogenic units, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl, was synthesized. Its spectroscopic structure, thermal properties, and phase structures were investigated with NMR, differential scanning calorimetry (DSC), and polarized light microscopy (PLM), respectively. The curing agent, diaminodiphenylsulfone, was chosen to investigate the curing behavior by means of DSC and PLM during isothermal and nonisothermal processes. Only one exothermal peak appeared in the isothermal DSC curves. Birefringence was also observed during the curing processes and preserved after postcuring. Compared with short rigid‐rod and flexible epoxies, the cured liquid‐crystalline epoxy resin that was obtained displayed special thermal stability according to thermogravimetric analysis because of its long rigid‐rod mesogenic unit and bulky methyl groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 727–735, 2007  相似文献   

18.
An Erratum has been published for this article in Journal of Polymer Science Part A: Polymer Chemistry (2003) 41(23) 3862 A new series of combined‐type, azobenzene‐based organophosphorus liquid‐crystalline polymers were synthesized, and their photoisomerization properties were studied. The prepared polymers contained azobenzene units as both the main‐chain and side‐chain mesogens. Various groups were substituted in the terminal of the side‐chain azobenzene mesogen, and the effects of the substituents were investigated. All the polymers were prepared at the ambient temperature by solution polycondensation with various 4‐substituted phenylazo‐4′‐phenyloxyhexylphosphorodichloridates and 4,4′‐bis(6‐hydroxyhexyloxy) azobenzene. The polymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H, 13C, and 31P NMR spectroscopy. Thermogravimetric analysis revealed that all the polymers had high char yields. The liquid‐crystalline behavior of the polymers was examined with hot‐stage optical polarizing microscopy, and all the polymers showed liquid‐crystalline properties. The formation of a mesophase was confirmed by differential scanning calorimetry (DSC). The DSC data suggested that mesophase stability was better for electron‐withdrawing substituents than for halogens and unsubstituted ones. Ultraviolet irradiation studies indicated that the time taken for the completion of photoisomerization depended on the dipolar moment, size, and donor–acceptor characteristics of the terminal substituents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3188–3196, 2003  相似文献   

19.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

20.
Main‐chain liquid‐crystalline polyurethanes were synthesized based on a high aspect ratio mesogenic diol (4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐benzoic acid 4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐phenyl ester) as a chain extender; polycaprolactone (PCL) diol soft segments of different number‐average molecular weights (530, 1250, or 2000); and different diisocyanates, including 1,4‐hexamethylene diisocyanate (HMDI), 4,4′‐methylene bis(cyclohexyl isocyanate) (H12MDI), and 4,4′‐methylene bis(phenyl isocyanate) (MDI). The structure of the polymers was confirmed with Fourier transform infrared spectroscopy, and differential scanning calorimetry and polarizing microscopy measurements were carried out to examine the liquid‐crystalline and thermal properties of the polyurethanes, respectively. The mesogenic diol was partially replaced with 20–50 mol % PCL. A 20 mol % mesogen content was sufficient to impart a liquid crystalline property to all the polymers. The partial replacement of the mesogenic diol with PCL of various molecular weights, as well as the various diisocyanates, influenced the phase transitions and the occurrence of mesophase textures. Characteristic liquid‐crystalline textures were observed when a sufficient content of the mesogenic diol was present. Depending on the flexible spacer length and the mesogenic content, grained and threadlike textures were obtained for the HMDI and H12MDI series polymers, whereas the polyurethanes prepared from MDI showed only grained textures for all the compositions. The polymers formed brittle films and could not be subjected to tensile tests. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1527–1538, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号