首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) (1; 3Mn(III)) with [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (2; 10Mn(III)) in MeCN affords the new mixed-valent complex [Mn(21)O(14)(OH)(2)(O(2)CMe)(16)(hmp)(8)(pic)(2)(py)(H(2)O)](ClO(4))(4) (3; 3Mn(II)-18Mn(III); hmp(-) is the anion of 2-(hydroxymethyl)pyridine), with an average Mn oxidation state of +2.85. Complex 3.7MeCN crystallizes in the triclinic space group P. The structure consists of a low symmetry [Mn(21)(micro(4)-O)(4)(micro(3)-O)(12)(micro-O)(16)] core, with peripheral ligation provided by 16 MeCO(2)(-), 8 hmp(-), and 2 pic(-) groups and one molecule each of water and pyridine. The magnetic properties of 3 were investigated by both dc and ac magnetic susceptibility measurements. Fitting of dc magnetization data collected in the 0.1-0.8 T and 1.8-4.0 K ranges gave S = (17)/(2), D approximately -0.086 cm(-)(1), and g approximately 1.8, where S is the molecular spin of the Mn(21) complex and D is the axial zero-field splitting parameter. ac susceptibility studies in the 10-997 Hz frequency range reveal the presence of a frequency-dependent out-of-phase ac magnetic susceptibility (chi(M)' ') signal consistent with slow magnetization relaxation rates. Fitting of dc magnetization decay versus time data to the Arrhenius equation gave a value of the effective barrier to relaxation (U(eff)) of 13.2 K. Magnetization versus applied dc field sweeps exhibited hysteresis. Thus, complex 3 is a new member of the small but growing family of single-molecule magnets.  相似文献   

2.
Chen H  Ma CB  Yuan DQ  Hu MQ  Wen HM  Liu QT  Chen CN 《Inorganic chemistry》2011,50(20):10342-10352
A family of Mn(III)/Ni(II) heterometallic clusters, [Mn(III)(4)Ni(II)(5)(OH)(4)(hmcH)(4)(pao)(8)Cl(2)]·5DMF (1·5DMF), [Mn(III)(3)Ni(II)(6)(N(3))(2)(pao)(10)(hmcH)(2)(OH)(4)]Br·2MeOH·9H(2)O (2·2MeOH·9H(2)O), [Mn(III)Ni(II)(5)(N(3))(4)(pao)(6)(paoH)(2)(OH)(2)](ClO(4))·MeOH·3H(2)O (3·MeOH·3H(2)O), and [Mn(III)(2)Ni(II)(2)(hmcH)(2)(pao)(4)(OMe)(2)(MeOH)(2)]·2H(2)O·6MeOH (4·2H(2)O·6MeOH) [paoH = pyridine-2-aldoxime, hmcH(3) = 2, 6-Bis(hydroxymethyl)-p-cresol], has been prepared by reactions of Mn(II) salts with [Ni(paoH)(2)Cl(2)], hmcH(3), and NEt(3) in the presence or absence of NaN(3) and characterized. Complex 1 has a Mn(III)(4)Ni(II)(5) topology which can be described as two corner-sharing [Mn(2)Ni(2)O(2)] butterfly units bridged to an outer Mn atom and a Ni atom through alkoxide groups. Complex 2 has a Mn(III)(3)Ni(II)(6) topology that is similar to that of 1 but with two corner-sharing [Mn(2)Ni(2)O(2)] units of 1 replaced with [Mn(3)NiO(2)] and [MnNi(3)O(2)] units as well as the outer Mn atom of 1 substituted by a Ni atom. 1 and 2 represent the largest 3d heterometal/oxime clusters and the biggest Mn(III)Ni(II) clusters discovered to date. Complex 3 possesses a [MnNi(5)(μ-N(3))(2)(μ-OH)(2)](9+) core, whose topology is observed for the first time in a discrete molecule. Careful examination of the structures of 1-3 indicates that the Mn/Ni ratios of the complexes are likely associated with the presence of the different coligands hmcH(2-) and/or N(3)(-). Complex 4 has a Mn(III)(2)Ni(II)(2) defective double-cubane topology. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-4. Fitting of the obtained M/(Nμ(B)) vs H/T data gave S = 5, g = 1.94, and D = -0.38 cm(-1) for 1 and S = 3, g = 2.05, and D = -0.86 cm(-1) for 3. The ground state for 2 was determined from ac data, which indicated an S = 5 ground state. For 4, the pairwise exchange interactions were determined by fitting the susceptibility data vs T based on a 3-J model. Complex 1 exhibits out-of-phase ac susceptibility signals, indicating it may be a SMM.  相似文献   

3.
The syntheses, structures, and magnetic properties of the complexes [MnIV4MnIII10MnII2O2(OCH3)12(tmp)8(O2CCH3)10].3Et2O (1.3Et2O), [MnIV2MnIII18MnII2O6(OCH3)14(O2CCH3)16(tmp)8(HIm)2].2CH3OH (2.2CH3OH), and [MnIV2MnIII18MnII2O6(OCH3)14(O2CCH3)16(Br-mp)8(HIm)2].2C6H14.5CH3OH (3.2C6H14.5CH3OH) are reported. The unusual wheel-like complexes were prepared by the treatment of [Mn3O(O2CCH3)6(HIm)3](O2CCH3) (HIm = imidazole) with 1,1,1-tris-(hydroxymethyl)propane (H3tmp) (1 and 2) or 2-(bromomethyl)-2-(hydroxymethyl)-1,3-propanediol (Br-mpH3) (3) in the presence of sodium methoxide (NaOCH3, 2, and 3) in CH3OH. Complex 1.3Et2O crystallizes in the triclinic space group P, while complexes 2.2CH3OH and 3.2C6H14.5CH3OH crystallize in the orthorhombic space group Pbca. Direct current magnetic susceptibility data, collected for 1-3 in the respective 1.8-300 K and 0.1-7 T temperature and magnetic-field ranges, afford spin ground-state values of S = 14 +/- 1 for complex 1 and S = 9 +/- 1 for complexes 2 and 3. Alternating current susceptibility measurements performed on all three complexes in the 1.8-10 K temperature range in a 3.5 G oscillating field at frequencies between 50 and 1000 Hz reveal out-of-phase chi"M signals below approximately 3 K. Single-crystal hysteresis loop and relaxation measurements confirm single-molecule magnetism behavior.  相似文献   

4.
The reaction of the mixed-valent metal triangles [Mn(3)O(O(2)CR)(6)(py)(3)] (R = CH(3), Ph, C(CH(3))(3)) with the tripodal ligands H(3)thme (1,1,1-tris(hydroxymethyl)ethane) and H(3)tmp (1,1,1-tris(hydroxymethyl)propane) in MeCN, produces a family of manganese rodlike complexes whose structures are all derived from a series of edge-sharing triangles. Variable temperature direct current (dc) magnetic susceptibility data were collected for all complexes in the 1.8-300 K temperature range in fields up to 7.0 T. Complex 1, [Mn(12)O(4)(OH)(2)(PhCOO)(12)(thme)(4)(py)(2)], has an S = 7 ground state with the parameters g = 1.98 and D = -0.13 K. Complex 2, [Mn(8)O(4)((CH(3))(3)CCO(2))(10)(thme)(2)(py)(2)] has a ground state of S = 6, with g = 1.81 and D = -0.36 K. Complex 3, [Mn(7)O(2)(PhCO(2))(9)(thme)(2)(py)(3)], has a spin ground states of S = 7 with the parameters g = 1.78 and D = -0.20 K. The best fit for complex 4, [Mn(6)((CH(3))(3)CCO(2))(8)(tmp)(2)(py)(2)], gave a spin ground state of S = 3 with the parameters g = 1.73 and D = -0.75 K, but was of poorer quality than that normally obtained. The presence of multiple Mn(2+) ions in the structure of 4 leads to the presence of low-lying excited states with energy levels very close to the ground state, and in the case of complex 5, [Mn(6)(CH(3)CO(2))(6)(thme)(2)(H(2)tea)(2)], no satisfactory fit of the data was obtained. DFT calculations on 4 and 5 indicate complexes with spin ground states of S = 4 and S = 0 respectively, despite their topological similarities. Single-crystal hysteresis loop and relaxation measurements show complex 1 to be a SMM.  相似文献   

5.
The synthesis and magnetic properties of three isostructural hexadecametallic manganese clusters [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Ph)(16)(MeOH)(6)] (1), [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Cl)(16)(MeOH)(6)] (2), and [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Br)(16)(MeOH)(6)] (3) are reported. The complexes were prepared by a reductive aggregation reaction involving phenylacetic acid, chloroacetic acid or bromoacetic acid, and NBu(n)()(4)MnO(4) in MeOH. Complex 1 crystallizes in the monoclinic space group C2/c and consists of 6 Mn(IV) and 10 Mn(III) ions held together by 14 mu(3)-O(2)(-), 2 mu-O(2)(-), 4 mu-MeO(-), and 2 mu-O(2)CCH(2)Ph(-) groups. The remaining 14 mu-O(2)CCH(2)Ph(-) ligands, 2 mu-MeO(-) groups, and 6 terminal MeOH molecules constitute the peripheral ligation in the complex. Variable-temperature, solid-state dc magnetic susceptibility measurements on 1-3 in the temperature range 5.0-300 K reveal that all three complexes are dominated by intramolecular antiferromagnetic exchange interactions. Low-lying excited states preclude an exact determination of the spin ground state for 1-3 by magnetization measurements. Alternating current susceptibility measurements at zero dc field in the temperature range 1.8-10 K and a 3.5 G ac field oscillating at frequencies in the 5-1488 Hz range display, at temperatures below 3 K, a nonzero, frequency-dependent chi(M)"signal for complexes 1-3, with the peak maxima lying at temperatures less than 1.8 K. Single-crystal magnetization versus dc field scans down to 0.04 K for complex 1 show hysteresis behavior at <1 K, establishing 1 as a new member of the SMM family. No clear steps characteristic of quantum tunneling of magnetization (QTM) were observed in the hysteresis loops.  相似文献   

6.
Three dodecanuclear Mn clusters [Mn12O10(OMe)3(OH)(O2CC6H3F2)16(MeOH)2].8MeOH (1), [Mn12O10(OMe)4(O2CBu(t))16(MeOH)2] (2), and [Mn12O12(O2CBu(t))16(MeOH)4] (3) synthesized by reductive aggregation reactions are reported. Clusters 1 and 2 possess a central alkoxide-bridged planar Mn4 topology, whereas 3 is a new high-symmetry member of the normal Mn12 family. Complexes 1 and 2 crystallize in the monoclinic space groups C2/c and P2(1)/n, respectively. Both consist of four Mn(IV) and eight Mn(III) ions held together by 10 mu3-O2- ions, and either (i) one mu-OH- and three mu-MeO- groups for 1 or (ii) four mu-MeO- groups for 2. Complex 3 crystallizes in the orthorhombic space group Aba2 and possesses the normal Mn12 structure but with terminal MeOH molecules. The cyclic voltammogram (CV) of 1 exhibits no reversible redox processes. Variable-temperature, solid-state dc and ac magnetic susceptibility measurements on 1 and 2 reveal that they possess S = 5 and 9 ground states, respectively. In addition, ac susceptibility measurements on complex 1 in a zero dc field in the temperature range 1.8-10 K and in a 3.5 G ac field oscillating at frequencies in the 5-1488 Hz range display a nonzero frequency-dependent out-of-phase (chi(M)') signal at temperatures below 3 K, with the peak maxima lying at temperatures below 1.8 K. For complex 2, two frequency dependent chi(M)' signals are seen, one in the higher temperature range of 3-5 K and a second at lower temperatures with its peak maxima at temperatures below 1.8 K. Single-crystal magnetization vs dc field scans down to 0.04 K for 1.8MeOH and 2 show hysteresis behavior at <1 K, confirming that both complexes are new examples of SMMs.  相似文献   

7.
A carboxy-substituted alkylammonium salt, namely, (4-carboxybenzyl)tributylammonium hexafluorophosphate, ZHPF(6), was prepared and used as incoming carboxylate ligand in a ligand-exchange reaction with [Mn(12)O(12)(O(2)CCH(3))(16)(H(2)O)(4)] (1) to afford a new Mn(12) single-molecule magnet (SMM), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][PF(6)](16) (2), bearing 16 cationic units appended in the periphery. This compound behaves as a single-molecule magnet, exhibiting an out-of-phase ac magnetic susceptibility chi' '(M) signal that shows a single maximum in the 3.1-5.4 K temperature range. The frequency dependence of the maximum follows an Arrhenius law, with an effective energy barrier for reorientation of the spins U(eff) = 53 K. The reduced magnetization versus H/T data at different temperatures were fitted by using a Hamiltonian containing Zeeman, axial, and quartic zero-field splitting terms. The expected spin ground state S = 10 was found, and the least-squares fit afforded the following zero-field-splitting parameters: D = -0.44 cm(-1); B(4)(0) = 0.12 x 10(-4) cm(-1). Magnetization hysteresis loops were observed for 2, with a coercive field H(c) = 0.34 T. Complex 2 has been used as countercation in the preparation of a family of hybrid salts containing different polyoxometalate anions, [Mn(12)O(12)(Z)(16)(H(2)O)(4)][W(6)O(19)](8) (3), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][PW(12)O(40)](16/3) (4), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][(H(3)O)PW(11)O(39)Ni](4) (5), and [Mn(12)O(12)(Z)(16)(H(2)O)(4)][(H(3)O)PW(11)O(39)Co](4) (6). 3-6 exhibit typical magnetic hysteresis loops with higher coercive fields for the complexes containing diamagnetic polyanions: H(c) = 0.075 T (3), 0.046 T (4), 0.016 T (5), and 0.0075 T (6). However, the dynamics of the magnetic behavior below the blocking temperature is similar in all compounds. Broad frequency-dependent out-of-phase ac susceptibility signals are observed, presumably due to mixtures of different Jahn-Teller isomers. Their temperature dependence is also typical of an activated-energy process, with effective energy barriers in the 50 K range, irrespective of the nature of the polyoxoanion (diamagnetic, as in 3 and 4, or paramagnetic, as in 5 and 6). These findings seem to discard any influence of the polyoxometalate in the magnetic properties of the SMM.  相似文献   

8.
The syntheses, structures and magnetic properties of three new MnIII clusters, [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1), [Mn(0O6(OH)2(bta)8(py)8F8] (2) and [NHEt3]2[Mn3O(bta)6F3] (3), are reported (bta=anion of benzotriazole), thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry. The "melt" reaction (100 degrees C) between MnF(3) and benzotriazole (btaH, C6H5N3) under an inert atmosphere, followed by dissolution in MeOH produces the cluster [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1) after two weeks. Complex 1 crystallizes in the triclinic space group P1, and consists of a complicated array of metal tetrahedra linked by mu3-O2- ions, mu3- and mu2-OH- ions, mu2-MeO- ions and mu2-bta- ligands. The "simpler" reaction between MnF3 and btaH in boiling MeOH (50 degrees C) also produces complex 1. If this reaction is repeated in the presence of pyridine, the decametallic complex [Mn10O6(OH)2(bta)8(py)8F8] (2) is produced. Complex 2 crystallizes in the triclinic space group P1 and consists of a "supertetrahedral" [Mn(III)10] core bridged by six mu3-O2- ions, two mu3-OH- ions, four mu2-F- ions and eight mu2-bta- ions. The replacement of pyridine by triethylamine in the same reaction scheme produces the trimetallic species [NHEt3]2[Mn3O(bta)6F3] (3). Complex 3 crystallises in the monoclinic space group P2(1)/c and has a structure analogous to that of the basic metal carboxylates of general formula [M3O(RCO2)6L3]0/+, which consists of an oxo-centred metal triangle with mu2-bta- ligands bridging each edge of the triangle and the fluoride ions acting as the terminal ligands. DC magnetic susceptibility measurements in the 300-1.8 K and 0.1-7 T ranges were investigated for all three complexes. For each, the value of chi(M)T decreases with decreasing temperatures; this indicates the presence of dominant antiferromagnetic exchange interactions in 1-3. For complex 1, the low-temperature value of chi(M)T is 10 cm(3) K mol(-1) and fitting of the magnetisation data gives S=4, g=2.0 and D=-0.90 cm(-1). For complex 2, the value of chi(M)T falls to a value of approximately 5.0 cm(3) K mol(-1) at 1.8 K, which is consistent with a small spin ground state. For the triangular complex 3, the best fit to the experimental chi(M)T versus T data was obtained for the following parameters: Ja = -5.01 cm(-1), Jb = +9.16 cm(-1) and g=2.00, resulting in an S=2 spin ground state. DFT calculations on 3, however, suggest an S=1 or S=0 ground state with J(a)=-2.95 cm(-1) and J(b)=-2.12 cm(-1). AC susceptibility measurements performed on 1 in the 1.8-4.00 K range show the presence of out-of-phase AC susceptibility signals, but no peaks. Low-temperature single-crystal studies performed on 1 on an array of micro-SQUIDS show the time- and temperature-dependent hysteresis loops indicative of single-molecule magnetism behaviour.  相似文献   

9.
The synthesis, crystal structures, and magnetochemical characterization of two new Mn clusters [Mn(8)O(2)(O(2)CPh)(10)(hmp)(4)(MeOH)(2)] (1; 6Mn(II), 2Mn(III)) and [Mn(16)O(8)(OH)(2)(O(2)CPh)(12)(hmp)(10)(H(2)O)(2)](O(2)CPh)(2) (2; 6Mn(II), 10Mn(III)) are reported. They were obtained from the use of 2-(hydroxymethyl)pyridine (hmpH) under the same reaction conditions but differing in the presence or absence of added base. Thus, the reaction of hmpH with Mn(O(2)CPh)(2) in CH(2)Cl(2)/MeOH led to isolation of octanuclear complex 1, whereas the analogous reaction in the presence of NEt(3) gave hexadecanuclear complex 2. Complexes 1 and 2 possess either very rare or unprecedented core structures that are related to each other: that of 1 can be described as a linked pair of incomplete [Mn(4)O(3)] cubanes, while that of 2 consists of a linked pair of complete [Mn(4)O(4)] cubanes, on either side of which is attached a tetrahedral [Mn(4)(μ(4)-O)] unit. Solid-state direct current (dc) and alternating current (ac) magnetic susceptibility measurements on 1 and 2 establish that they possess S = 5 and 8 ground states, respectively. Complex 2 exhibits frequency-dependent out-of-phase (χ(M)") ac susceptibility signals at temperatures below 3 K suggestive of a single-molecule magnet (SMM). Magnetization versus applied dc field sweeps on single crystals of 2·10MeOH down to 0.04 K exhibited hysteresis, confirming 2 to be a new SMM. Comparison of the structure of 2 (Mn(16)) with Mn(12) or Mn(6) clusters previously obtained under the same reaction conditions but with two Me or two Ph groups, respectively, added next to the alkoxide O atom of hmp(-) indicate their influence on the nuclearity and structure of the products as being due to the overall bulk of the chelate plus the decreased ability of the O atom to bridge.  相似文献   

10.
Aggregation of tetranuclear Mn(4)O(2) building blocks with alkali ion was studied. Several Mn(iii) complexes containing [Mn(4)O(2)(AcO)(7)(pyz)(2)](-) (pyz = pyrazinate) anion(s) were obtained from an assembly system containing Mn(ii), MnO(4)(-), HOAc and Hpyz (Napyz or Kpyz). These [Mn(4)O(2)](8+) complexes have monomeric (1 and 2), dimeric (4 and 5) and one-dimensional chain () structures of which alkali metal ion connects the Mn ions of adjacent [Mn(4)O(2)](8+) units through mu(1,1)- and mu(1,3)-carboxylate bridges. Complexes 2 or 3 were converted into [Mn(12)O(12)(AcO)(16)(H(2)O)(4)] in EtOH solution in the presence of HOAc. However, in MeOH solution, a coordination polymer [Mn(2)(HCOO)(4)(H(2)O)(4)](n) was obtained accompanying the oxidation of MeOH to become HCHO and HCOOH. Tracing the (1)H NMR spectra of 2 or 3 in CD(3)OD, the disappearance of the resonance signals in 3 h indicated the decomposition of the [Mn(4)O(2)](8+) cores. Complex 2 exhibits its proton NMR signals in CDCl(3) which are similar to those of its pic analogue but accompany downfield shift to various extents for all the corresponding signals. Variable-temperature magnetic susceptibilities of complexes 2-5 in the range 5-300 K were recorded and were fitted for an Mn(4)O(2) butterfly core, giving the fitting parameters J(bb) = -2.67 to -3.76 cm(-1) and J(wb) = -1.16 to -3.14 cm(-1). Small J values indicate weak antiferromagnetic coupling interactions of the Mn(iii) sites and the spin ground states are considered as S(T) = 0 based on the J(bb)/J(wb) ratio approximately 1 for these complexes. The ESR spectra were recorded for complex 2 in dual-mode at liquid-helium temperatures and no obvious signal could be found. The addition of p-cresol gives rise to the reduction of the [Mn(4)O(2)](8+), resulting in observable signals.  相似文献   

11.
The employment of the anion of 2,6-diacetylpyridine dioxime (dapdoH2) as a pentadentate chelate in transition metal cluster chemistry is reported. The syntheses, crystal structures, and magnetochemical characterization are described for [Mn6O2(OMe)2(dapdo)2(dapdoH)4](ClO4)2 (1), [Mn6O2(OMe)2(dapdo)2(dapdoH)4][Ca(NO3)4] (2), and [Mn8O4(OH)4(OMe)2(N3)2(dapdo)2(dapdoH)2(H2O)2] (3). The reaction of [Mn3O(O2CMe)6(py)3](ClO4) with 3 equiv of dapdoH2 (with or without 2 equiv of NEt3) in MeOH gave 1. The same cation, but with a [Ca(NO3)4]2- anion, was found in complex 2, which was obtained from the reaction in MeOH between Mn(NO3)2, Ca(NO3)2, and dapdoH2 in the presence of NEt3. In contrast, addition of NaN3 to several reactions comprising MnCl2, dapdoH2, and NEt3 in MeOH gave the octanuclear complex 3. Complexes 1-3 all possess rare topologies and are mixed-valence: 2MnII, 4MnIII for 1 and 2, and 2MnII, 6MnIII for 3. The core of the cation of 1 and 2 consists of two edge-sharing Mn4 tetrahedra at the center of each of which is a micro4-O2- ion. Peripheral ligation is provided by two micro-OMe-, four micro-dapdoH-, and two micro3-dapdo2- groups. The core of 3 consists of two [MnIIMnIII3(micro3-O)2]7+ "butterfly" units linked together by one of the micro3-O2- ions, which thus becomes micro4. Peripheral ligation is provided by four micro-OMe-, two micro-OH-, two micro-dapdoH-, and two micro4-dapdo2- groups. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range; the data for 1 and 2 are identical. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, D) established that 1 possesses an S=5 ground state with D=-0.24 cm(-1). For 3, low-lying excited states precluded obtaining a good fit from the magnetization data, and the ground state was instead determined from the ac data, which indicated an S=1 ground state for 3. The combined work demonstrates the ligating flexibility of pyridyl-dioxime chelates and their usefulness in the synthesis of new polynuclear Mnx clusters without requiring the co-presence of carboxylate ligands.  相似文献   

12.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

13.
The syntheses, crystal structures, and magnetochemical characterization are reported for three new mixed-valent Mn clusters [Mn(8)O(3)(OH)(OMe)(O(2)CPh)7(edte)(edteH(2))](2)CPh) (1), [Mn(12)O(4)(OH)(2)(edte)(4)C(l6)(H(2)O)(2)] (2), and [Mn(20)O(8)(OH)(4)(O(2)CMe)(6)(edte)(6)](ClO(4))(2) (3) (edteH(4) = (HOCH(2)CH(2))(2)NCH(2)CH(2)N(CH(2)CH(2)OH)(2) = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine). The reaction of edteH(4) with Mn(O(2)CPh)(2), MnCl(2), or Mn(O(2)CMe)(2) gives 1, 2, and 3, respectively, which all possess unprecedented core topologies. The core of 1 comprises two edge-sharing [Mn(4)O(4)] cubanes connected to an additional Mn ion by a micro(3)-OH- ion and two alkoxide arms of edteH(22-). The core of 2 consists of a [Mn(12)(micro(4-)O)(4)](24+) unit with S4 symmetry. The core of 3 consists of six fused [Mn(4)O(4)] cubanes in a 3 x 2 arrangement and linked to three additional Mn atoms at both ends. Variable-temperature, solid-state dc and ac magnetization (M) studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained M/Nmicro(B) vs H/T data by matrix diagonalization and including only axial zero-field splitting (ZFS) gave ground-state spin (S) and axial ZFS parameter (D) of S = 8, D = -0.30 cm-1 for 1, S = 7, D = -0.16 cm-1 for 2, and S = 8, D = -0.16 cm-1 for 3. The combined work demonstrates that four hydroxyethyl arms on an ethylenediamine backbone can generate novel Mn structural types not accessible with other alcohol-based ligands.  相似文献   

14.
We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2). Both compounds exhibit a frequency-dependent out-of-phase χ'(T) alternating current (ac) susceptibility signal that is suggestive of SMM behaviour. From the Arrhenius expression, the effective barrier for 1 is found to be Δ(eff)/k(B)=19 K (τ(0)=5.0×10(-7) s; k(B)=Boltzmann constant), whereas only the onset (1.5 kHz, 1.8 K) of χ'(T) is observed for 2, thus indicating a higher blocking temperature for 1. The strong spin-orbit coupling present in Os(III) isolates the E'(1g(1/2))(O(h)*) Kramers doublet that exhibits orbital contributions to the single-ion anisotropy. Magnetic susceptibility and inelastic neutron-scattering measurements reveal that substitution of [Fe(CN)(6)](3-) by the [Os(CN)(6)](3-) anion results in larger ferromagnetic, anisotropic exchange interactions going from quasi-Ising exchange interactions in 2 to pure Ising exchange for 1 with J(parallel)(MnOs)=-30.6 cm(-1). The combination of diffuse magnetic orbitals and the Ising-type exchange interaction effectively contributes to a higher blocking temperature. This result is in accordance with theoretical predictions and paves the way for the design of a new generation of SMMs with enhanced SMM properties.  相似文献   

15.
Three manganese(III) compounds, [Mn(III)(vanoph)(DMF)(H(2)O)]ClO(4) (1), [Mn(III)(vanoph)(N(3))(H(2)O)]·2H(2)O (2) and [Mn(III)(saloph)(μ(1,3)-N(3))](n) (3), where H(2)vanoph = N,N'-(1,2-phenylene)-bis(3-methoxysalicylideneimine), H(2)saloph = N,N'-(1,2-phenylene)-bis(salicylideneamine) are tetradentate N(2)O(2) ligands and DMF = N,N-dimethylformamide, have been prepared and characterised by elemental analysis, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction studies. Compounds 1 and 2 are monomeric but compound 3 consists of a chain system with the repeating unit [Mn(III)(saloph)(N(3))] bridged by μ-1,3 azide. Compound 1 crystallises in monoclinic space group P2(1)/n with cell dimensions of a = 11.1430(2), b = 16.3594(3), c = 15.4001(3) ?, β = 108.417(1), Z = 4 whereas compounds 2 and 3 crystallise in orthorhombic space groups Pbca and Pna2(1), respectively, with cell dimensions of a = 16.069(3), b = 15.616(3), c = 18.099(4) ?, Z = 8 (for 2) and a = 18.760(9), b = 13.356(5), c = 6.616(3) ?, Z = 4 (for 3). In all the compounds, Mn(III) has a six-coordinated pseudo-octahedral geometry in which O(2), O(3), N(1) and N(2) atoms of the deprotonated di-Schiff base constitute the equatorial plane. In both compounds 1 and 2, water molecules are present in the fifth coordination sites in the apical positions. The sixth coordination sites are occupied by one O atom of a solvent DMF in compound 1 and an N atom of azide in compound 2. The coordinated water initiates hydrogen-bonded networks in both compounds 1 and 2 to form well-isolated supramolecular dimers. At room temperature the χ(M)T values for the compounds 1 and 2 remain almost constant until 30 K. Below this temperature, the χ(M)T values drastically drop to 0.72 cm(3) mol(-1) K for 1 and 0.52 cm(3) mol(-1) K for 2. The best fits were obtained with J = -0.92 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 8.1 × 10(-4) for 1 and J = -1.16 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 1.2 × 10(-3) for 2. However, in compound 3, two axial positions are occupied by the azide ions. The Mn···Mn repeating distance is 6.616 ? along the chain. Magnetic characterisation shows that the μ(1,3)-bridging azide ion mainly transmits an antiferromagnetic interaction (J = -6.36 cm(-1)) between Mn(III) ions. The presence of two methoxy groups increases the steric crowding in the H(2)vanoph moiety and thereby inhibits the formation of a polynuclear compound with this ligand.  相似文献   

16.
Zheng YZ  Xue W  Zhang WX  Tong ML  Chen XM 《Inorganic chemistry》2007,46(16):6437-6443
Two new mixed-valence manganese-carboxylate clusters, [MnIII9MnIV6(O2CPh)12(micro3-O)13(micro-O)4(micro-OMe)5(MeOH)4(H2O)5]2.1.5PhCO2H.MeOH.6H2O (1, PhCO2H = benzoic acid) and [MnIII9MnIV6(O2CCh)12(micro3-O)13(micro-O)4(micro-OMe)5(MeOH)3(H2O)6].0.5MeOH.2.5H2O (2, ChCO2H= cyclohexanecarboxylic acid) contain new disklike Mn15 cores. Both 1 and 2 can be synthesized by the conventional manganese redox reaction (MnO4- oxidizing Mn2+) in methanol solution. 2 can be also synthesized via the site-specific ligand substitution reaction from 1. 1 crystallizes in the triclinic space group P, whereas 2 crystallizes in the trigonal space group P. Magnetic study shows that both 1 and 2 have the same ground spin states ST = 2. Compared to the silence of the out-of-phase ac susceptibility of 1, 2 shows clearly slow magnetic relaxation behavior above 1.8 K due to the dramatically enhanced axial magnetic anisotropy (D = -0.89 and -1.58 cm-1 for 1 and 2, respectively, which was obtained by fitting the plots of M vs H/T with the program ANISOFIT 2.0).  相似文献   

17.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

18.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

19.
The synthesis and magnetic properties are reported of two new clusters [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (1) and [Mn(7)(OH)(3)(hmp)(9)Cl(3)](Cl)(ClO(4)) (2). Complex 1 was prepared by treatment of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) with 2-(hydroxymethyl)pyridine (hmpH) in CH(2)Cl(2), whereas 2 was obtained from the reaction of MnCl(2).4H(2)O, hmpH, and NBu(n)(4)MnO(4) in MeCN followed by recrystallization in the presence of NBu(n)(4)ClO(4). Complex 1.2py.10CH(2)Cl(2).2H(2)O crystallizes in the triclinic space group P1. The cation consists of 10 Mn(III) ions, 8 mu(3)-O(2)(-) ions, 2 mu(3)-OH(-) ions, 8 bridging acetates, and 8 bridging and chelating hmp(-) ligands. The hmp(-) ligands bridge through their O atoms in two ways: two with mu(3)-O atoms and six with mu(2)-O atoms. Complex 2.3CH(2)Cl(2).H(2)O crystallizes in the triclinic space group P1. The cation consists of four Mn(II) and three Mn(III) ions, arranged as a Mn(6) hexagon of alternating Mn(II) and Mn(III) ions surrounding a central Mn(II) ion. The remaining ligation is by three mu(3)-OH(-) ions, three terminal chloride ions, and nine bridging and chelating hmp(-) ligands. Six hmp(-) ligands contain mu(2)-O atoms and three contain mu(3)-O atoms. The Cl(-) anion is hydrogen-bonded to the three mu(3)-OH(-) ions. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 5.00-300 K range in a 5 kG applied field. The chi(M)T value gradually decreases from 17.87 cm(3) mol(-1) K at 300 K to 1.14 cm(3) mol(-1) K at 5.00 K, indicating an S = 0 ground state. The ground-state spin of complex 2 was established by magnetization measurements in the 0.5-3.0 T and 1.80-4.00 K ranges. Fitting of the data by matrix diagonalization, incorporating only axial anisotropy (DS(z)(2)), gave equally good fits with S = 10, g = 2.13, D = -0.14 cm(-1) and S = 11, g = 1.94, D = -0.11 cm(-1). Magnetization versus dc field scans down to 0.04 K reveal no hysteresis attributable to single-molecule magnetism behavior, only weak intermolecular interactions.  相似文献   

20.
Four mixed-valent (Mn(IV)Mn(III)(6)Mn(II)(6)) tridecanuclear Mn clusters [Mn(13)O(8)(OH)(6)(ndc)(6)] (1), [Mn(13)O(8)(OEt)(5)(OH)(ndc)(6)] (2), [Mn(13)O(8)(O(2)CPh)(12)(OEt)(6)] (3), and [Mn(13)O(8)(OMe)(6)(ndc)(6)] (4) are reported, where ndcH(2) is 1,8-naphthalenedicarboxylic acid. This is the first use of the latter in Mn chemistry. Complexes 1-3 are essentially isostructural and possess a central core composed of three layers. The middle layer consists of a Mn(II)(6) hexagon containing a central Mn(IV) atom, and above and below this are Mn(III)(3) triangular units. These core Mn atoms are held together by a combination of O(2-), RO(-), or HO(-) bridging groups. The overall metal topology is an unusual one, with the overall geometry being a metal-centered cuboctahedron (heptaparallelohedron). Variable-temperature, solid-state dc, and ac magnetization studies were carried out on complexes 1-4 in the 5.0-300 K range. Compound 1 was found to possess an S = 9/2 ground-state spin, whereas 2, 3, and 4 have an S = 11/2 ground state. Fitting of the magnetization (M) versus field (H) and temperature (T) data by matrix diagonalization and including only axial zero-field splitting, D, gave D = -0.14 cm(-1) for 1. High-frequency EPR studies were carried out on single crystals of 1.xDMF, and these confirmed D to be very small, that is, 1 is essentially isotropic. The combined work demonstrates the ligating ability of 1,8-naphthalenedicarboxylate, notwithstanding its robust organic backbone and the restricted parallel disposition of its two carboxylate moieties, and its usefulness in the synthesis of new polynuclear Mn(x) clusters. The work also demonstrates a sensitivity of the ground-state spin in this Mn(13) family of complexes to relatively small structural perturbations, while the high-frequency EPR study demonstrated the magnetically isotropic nature of the Mn(13) core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号