首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorocarbon-based chemistries were used to study the effect of wafer temperature on the etch of high aspect ratio hardmasks composed of SiO2 and SiNx layers. It is found that etch stop can occur easily at high temperature. The rate of polymer deposition plays an important role in etch stop. The etching rates were found to be inversely proportional to the wafer temperature. Such a relation indicates a negative activation energy in the rate expression of hardmask etching using fluorocarbon plasma. It also implies that in hardmask etching, complicated gas-surface, but not simple one-step, reactions are involved. Different wafer surface temperature can provide different degree of activation for etching reactions. Analysis of etching rate and optical emission trends indicates that CFx may contribute more than F does in the etch of SiO2 and SiNx, since polymer-rich etching chemistries were used. Based on the temperature-dependent etching rate, we propose a reaction mechanism for the reaction trends observed in hardmask etching.  相似文献   

2.
Dry etching of common masking materials used in GaAs device technology, was examined down to temperatures of –30°C. The etch rates of SiNx, SiO2, and W in SF6/Ar are reduced below 0°C, but the anisotropy of the etching is improved at low temperature. Microwave enhancement of the SF6/Ar discharges produces increases in etch rates of several times at 25°C, but much lower increases at –30°C substrate temperature. The underlying GaAs surface shows increased S and F coverage after low-temperature etching, but these species are readily removerd either by anex-situ wet chemical cleaning step or an in-situ H2 plasma exposure. Photoresist etching is less sensitive to temperature, and anisotropic profiles are produced between –30 and +60°C in pure O2 discharges.  相似文献   

3.
The electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS) using charged electrospray water droplets realized the atomic and molecular level etching with leaving little damage on the surface. In this work, the binary mixtures of water and alcohols (methanol and 2‐propanol) were examined as the charged electrospray droplets. The increase of desorption efficiency and softer ionization are observed for rhodamine B and bradykinin with higher content of alcohols. The etching rates for SiO2 and polystyrene 35000 were found to be more or less the same for 100% H2O and H2O/MeOH projectiles. However, 60 vol.% 2‐propanol gave much lower etching rates than the water/methanol system for polystyrene 35000. This indicates that there is a marked difference in the energy dissipation processes between methanol and 2‐propanol projectiles for soft‐material target. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The comparative study of etching characteristics and mechanisms for TiO2 thin films in CF4 + Ar, Cl2 + Ar and HBr + Ar inductively coupled plasmas was carried out. The etching rates for TiO2, Si and photoresist were measured as functions of gas mixing ratios at fixed gas pressure (10 mTorr), input power (800 W) and bias power (300 W). It was found that the maximum TiO2 etching rate of ~130 nm/min correspond to pure CF4 plasma while an increase in Ar fraction in a feed gas results in the monotonic non-linear decrease in the TiO2 etching rates in all three gas mixtures. Plasma diagnostics by Langmuir probes and 0-dimensional (global) plasma modeling supplied the data on the densities of plasma actives specie as well as on particle and energy fluxes to the etched surface. It was concluded that, under the given set of experimental conditions, the TiO2 etching kinetics in all gas systems correspond to the ion-assisted chemical reaction with a domination of the chemical etching pathway. It was found also that the differences in the absolute TiO2 etching rates correlate with the energy thresholds for TiO2 + F, Cl or Br reaction, and the reaction probabilities for F, Cl and Br atoms exhibit the different changes with the ion energy flux according to the volatility of corresponding etching products.  相似文献   

5.
An investigation of etching behaviors for Mo and Al2O3 thin films in O2/Cl2/Ar inductively coupled plasmas at constant gas pressure (6 mTorr), input power (700 W) and bias power (200 W) was carried out. It was found that an increase in Ar mixing ratio for Cl2/Ar plasma results in non-monotonic etching rates with the maximums of 160 nm/min at 60 % Ar for Mo and 27 nm/min at 20 % Ar for Al2O3. The addition of O2 in the Cl2/Ar plasma causes the non-monotonic Mo etching rate (max. 320 nm/min at 40–45 % O2) while the Al2O3 etching rate decreases monotonically. The model-based analysis of etching kinetics allows one to relate the non-monotonic etching rates in Cl2/Ar plasma to the change in the etching regime from the ion-flux-limited mode (at low Ar mixing ratios) to the neutral-flux-limited mode (for high Ar mixing ratios). In the Cl2/O2/Ar plasma, the non-monotonic Mo etching rate is probably due to the change in reaction probability.  相似文献   

6.
A method for stepped etching of optical glass fibers using various compositions of etching agents based on a 40% hydrofluoric acid (HF) and aqueous solutions of ammonium fluoride (NH4F) has been considered. Compositions, etching rates, the dependence of etching rate on temperature, and tyeh dependence of etching forms on composition have been determined. The potential use of the method for stepped etching of optical glass fibers in the manufacture of microelectronic devices has been demonstrated.  相似文献   

7.
Henssge A  Acker J  Müller C 《Talanta》2006,68(3):581-585
The wet chemical etching of silicon by concentrated HF-HNO3 mixtures in solar and semiconductor wafer fabrication requires the strict control of the etching conditions. Surface morphology and etch rates are mainly affected by the amount of dissolved silicon, that is continuously enriched in the etching solution with each etching run. A fast and robust method for the titrimetric determination of the total dissolved silicon content out of the concentrated etching solution is presented. This method is based on the difference between the two equivalence points of the total amount of acid and the hydrolysis of the hexafluorosilicic anion. This approach allows a silicon determination directly from the etching process in spite of the presence of dissolved nitric oxides in the etching solution. The influences of different acid mixing ratios and of the etching solution density depending on the silicon content is considered and discussed in detail.  相似文献   

8.
Electron cyclotron resonance (ECR) plasma etching with additional rf-biasing produces etch rates 2,500 A/min for InGaP and AlInP in CH4/H2/Ar. These rates are an order of magnitude or much higher than for reactive ion etching conditions (RIE) carried out in the same reactor. N2 addition to CH4/H2/Ar can enhance the InGaP etch rates at low flow rates, while at higher concentrations it provides an etch-stop reaction. The InGaP and AlInP etched under ECR conditions have somewhat rougher morphologies and different stoichiometries up to 200 Å from the sur face relative to the RIE samples.  相似文献   

9.
Etch rates of Kapton H polyimide film in SF6-O2 plasmas (0.25 torr) were studied as a function of the input gas mixture, the excitation frequency (25–450 kHz; 13.56 MHz), and the biasing mode. The treated surface was examined by X ray photoelectron spectroscopy (ESCA), scanning electron microscopy (SEM), and contact angle measurement. The ion and neutral species of the plasma were sampled and analyzed by mass spectrometry. Etch rates are found to depend on the positive ion flux and the degree of dissociation of neutral molecules. Plasma-treated surfaces are always covered with a deposited material (CnHmOxFy) which partially obstructs the etching reaction by a masking effect and causes surface roughness. A proposed kinetic analysis of the etching mechanism is in good agreement with the experimental data.  相似文献   

10.
The effect of oxygen flow rate on bi-level contact etch was studied by observing uv-visible emission from the plasma, during CHF3/CO/O2 etching of di-electric layers consisting of SiO2 and SiNx. The emission intensity of CN at 387 nm drifted progressively from wafer to wafer during plasma etch. Such a phenomenon became more obvious when using low or high oxygen flow rate, whereas for intermediate flow rates, no significant drift of emission intensity was observed. The critical dimension (CD) bias of each wafer showed a strong correlation with CN emission intensity. Possible mechanisms for such an intensity drift phenomenon are proposed. The drift of emission intensity indicates that the contribution of chamber wall polymers in wafer etching is non-negligible. The CN emission intensity is an indication of the magnitude of etching rate. Our results suggest that the variation of plasma emission intensity might be used as an index for in-line monitoring of CD bias fluctuation.  相似文献   

11.
Chemical etching of Cd1 ? x Mn x Te (0.04 < x < 0.5) solid solution (ss) single crystals in I2 + CH3OH etching mixtures was studied. Concentration and kinetic curves of etching rates were plotted. As the manganese concentration of the solid solution increases, the rates of their etching by iodine-methanol etchants increase, too. The etchant compositions and chemical-dynamic polishing protocols for Cd1 ? x Mn x Te single crystals were optimized.  相似文献   

12.
Equal-etching-rate surfaces for single-crystalline CdTe and Cd1-x Zn x Te solid solution samples in etching mixtures of the H2O2-HBr-ethylene glycol (EG) system are mapped under reproducible hydrodynamic conditions using simplex design. The dissolution rate laws for these materials are studied, and the concentration boundaries of existence for polishing and nonpolishing solutions are determined. The increasing zinc concentration in the Cd1-x ZnxTe solid solution increases the etching rates, while the concentration boundaries of the polishing solutions in the diagram do not change significantly.  相似文献   

13.
Electrospray droplet impact (EDI) was applied to the analysis of peptides. The etching rate of bradykinin was estimated to be ~2 nm/min. This value is about one order of magnitude greater than the etching rate for SiO2 (0.2 nm/min). Considering that the etching rate of argon cluster ions Ar700+ for organic compounds is more than two orders of magnitude larger than that for inorganic materials, the rather small difference in etching rates of EDI for organic and inorganic materials is unique. When water/ethanol (1/1, vol%) solution of gramicidin S and arginine was dried in air, [gramicidin S + H]+ was observed as a predominant signal with little [Arg + H]+ right after the EDI irradiation, indicating that EDI is capable of detecting the analytes enriched on the sample surface. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A systematic study has been performed of the dry etching characteristics of GaAs, Al0.3Ga0.7As, and GaSb in chlorine-based electron cyclotron resonance (ECR) discharges. The gas mixtures investigated were CCl2F2/O2, CHCl2F/O2, and PCl3. The etching rates of all three materials increase rapidly with applied RF power, while the addition of the microwave power at moderate levels (150 W) increases the etch rates by 20–80%. In the microwave discharges, the etch rates decrease with increasing pressure, but at 1 m Torr it is possible to obtain usable rates for self-bias voltages 100 V. Of the Freon-based mixtures, CHCl2F provides the least degradation of optical (photoluminescence) and electrical (diode ideality factors and Schottky barrier heights) properties of GaAs as a result of dry etching. Smooth surface morphologies are obtained on all three materials provided the microwave power is limited to 200 W. Above this power, there is surface roughening evident with all of the gas mixtures investigated.  相似文献   

15.
The effects of gamma irradiation in the dose range of 1.0–20.0 Mrad on the etching and optical characteristics of Tuffak polycarbonate (C16H14O3)n nuclear track detector have been studied by using etching and UV–visible spectroscopic techniques. The bulk etch rates increase and the activation energies for bulk etching decrease with the increase in gamma dose. The optical band gaps determined from the UV–visible spectra were found to decrease with the increase in gamma dose. These results have been explained on the basis of scission of the detector due to gamma irradiation.  相似文献   

16.
Macrodistribution of etching rates of a macroscopically nonuniform, partially dipped, rotating disk electrode of low-carbon steel in 1 M NaCl at pH 1 with photoresist insulation and the density of active rectangular holes being 1.6 holes/mm2 is studied at dimensionless etching rates i 0 avg /i l = 0.2–1.1, where i 0 avg is the average current density per active surface and i l the limiting anodic current density determined by the ionic transport rate. The distribution of the average etching rates in the normal direction is determined by the primary current distribution and is insensitive towards the type of the dissolution rate distribution in a cavity.  相似文献   

17.
Etch rates of hexatriacontane (HTC) as high as ~10 mg s−1 m−2 in late O2 post-discharge are obtained at 333 K where no significant UV nor VUV irradiation occurs. Introducing N2 in the gas mixture helps control the ratio of O/O2 densities, which is shown to play a key role in the functionalization or etching of the HTC. The oxygen atoms are required for any further modification of the HTC because they initiate the formation of the radical chains by abstraction of one hydrogen. O(3P) atoms do not contribute directly to break the alkane chain close to room temperature but they can functionalise it. O2 is the important reactive species for the etching because of the role played by the peroxide groups on the scission of the hydrocarbon chains.  相似文献   

18.
A parametric study of the etching of Si and SiO2 by reactive ion etching (RIE) was carried out to gain a better understanding of the etching mechanisms. The following fluorocarbons (FCs) were used in order to study the effect of the F-to-Cl atom ratio in the parent molecule to the plasma and the etching properties: CF4, CF3Cl, CF2Cl2, and CFCl3 (FC-14, FC-13, FC-12, and FC-11 respectively). The Si etch rate uniformity across the wafer as a function of the temperature of the wafer and the Si load, the optical emission as a function of the temperature of the load, the etch rate of SiO2 as a function of the sheath voltage, and the mass spectra for each of the FCs were measured. The temperature of the wafer and that of the surrounding Si load strongly influence the etch rate of Si, the uniformity of etching, and the optical emission of F, Cl, and CF2. The activation energy for the etching reaction of Si during CF4 RIE was measured. The etch rate of Si depends more strongly on the gas composition than on the sheath voltage; it seems to be dominated by ion-assisted chemical etching. The etching of photoresist shifted from chemical etching to ion-assisted chemical etching as a function of the F-to-Cl ratio and the sheath voltage. The etch rate of SiO2 depended more strongly on the sheath voltage than on the F-to-Cl ratio.  相似文献   

19.
Stationary and non-stationary etching of Si(100) surfaces by hydrogen were studied between 200 K and 800 K using direct product detection and thermal desorption spectroscopy. Silane was the only etch product observed. The rates of silane SiDnH4−n isotopes measured during etching D-saturated Si(100) surfaces with gaseous H illustrate that the etch reaction proceeds between surface silyl and incoming H in a direct (Eley–Rideal or hot-atom) reaction step: H(g)+SiD3(ad)→SiD3H(g). Non-stationary etching via silane desorption occurs through disproportionation between surface dihydride and silyl groups, SiH2(ad)+SiH3(ad)→SiH4(g).  相似文献   

20.
Highly selective and low damage etching of the GaAs cap layer on AlGaAs is essential in fabricating GaAs/AlGaAs high electron mobility transistors. The GaAs on AlGaAs was etched using a low energy Cl2/O2 neutral beam and the Schottky device characteristics fabricated on the exposed AlGaAs were compared with those fabricated after the etching using wet etching and a Cl2/O2 ion beam. Using a low energy Cl2/O2 ion beam or a Cl2/O2 neutral beam, highly selective etching of the GaAs cap layer to AlGaAs similar to wet etching could be achieved through the formation of Al2O3 on the exposed AlGaAs during the etching. When the electrical characteristics of the Schottky devices were compared, the devices fabricated after the etching using the neutral beam showed the best electrical characteristics such as electrical stability, low leakage current, higher barrier height, etc. by showing low damage to the exposed AlGaAs surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号