首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activity of the enzyme Iraqi Turnip peroxidase (ITP) is studied in a reverse microemulsion composed of chloroform, aqueous buffer, sodium dodecylsulfate (SDS) and alcohols of the homologous series 1-propanol to 1-hexanol through the measurements of absorbancy of the product of oxidation at the wavelength of 470 nm in the course of reactions. The ITP catalyzed reaction is the oxidation of guaiacol by hydrogen peroxide. Maximum enzyme activity was obtained at ω0 (molar ratio of water to surfactant) = 8. It was found that the oxidation reaction obeyed Michaelis–Menten kinetics in the investigated concentration rang (0.08–0.8 mM) of the substrate, and the Michaelis constant Km and maximal reaction rate Vm were determined. The enzyme inhibition caused by the alcohols in microemulsions is a consequence of both the solubility of the alcohols in the buffer and the flexibility of the interfacial film.  相似文献   

2.
3.
Several isomorphic groups of micas: Muscovite-Phengite-Muscovite-Li-Muscovite; Biotite-Zinnwaldite-Lepidolite and Biotite-Phlogopite were investigated by DTA, TG and DTG. Octehedral vacancies and the sites of octahedral cationic occupancy were determined from IR-spectra of the hydroxyls. The influence of a composition and fine structure of the micas on the shape of the thermal curves was discussed. A one to one correspondence between the isomorphic series members and individual thermal curves makes it possible to determine the chemical composition of a mica sample. The combination of thermal and IR-spectra of hydroxyl analyses permits to link the Order-Disorder data with thermal properties of mica. Dedicated to Professor Lisa Heller-Kallai on the occasion of her 65th birthday  相似文献   

4.
A new way to prepare PMMA contain lead salt was presented. This work firstly prepares the material by microemulsion polymerization. The ability of anti-radiation, transmittance ratio and glass transition temperature (Tg) of the material was characterized. The anti-radiation ability is enhanced with the increasing of lead salt content and the thickness of the material. The transmittance ratio decreased with the content of the lead salt. The glass transition temperature of the material is increased with the lead salt content of the organic glass.  相似文献   

5.
We have previously reported the preparation of acetyl and benzoyl phenyl-thiosemicarbazone derivatives of chitosan and their antimicrobial activities. The purpose of this study was to further assess the relationship between chemical structure and antimicrobial activity of chloracetyl phenyl-thiosemicarbazone-chitosan. Ten new chloracetyl phenyl-thiosemicarbazone-chitosans were prepared, and their structures were characterized using FT-IR and elemental analysis. The synthesized compounds were tested against four species of bacteria and four crop-threatening pathogenic fungi. Different molecular weights and concentrations were evaluated. The antifungal activities of the synthesized compounds were related to the positive polarity of the N4 atom and the distribution of the electron atmosphere in the C=S group. All chitosan compounds had inhibitory effects when tested with bacteria. The minimum MIC and MBC with Escherichia coli were 7.03 and 56.25 μg mL?1, respectively.  相似文献   

6.
We study the effect of polyethylene glycol (PEG) on the dynamic and structure of water droplets at the reverse sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) microemulsion. The mixture of water and oil with anionic surfactant AOT can form microemulsion. The dynamic of microemulsion in the presence of PEG is investigated by photon correlation spectroscopy technique. We mainly focus on the variation of the translational diffusion behaviour as a function of the polymer concentration and polymer length scale. By increasing the content of the lowest PEG length scale (Mn = 285), the dynamic of microemulsion slows down. In addition, one relaxation process is distinguished for all polymer concentration. However, for the two higher polymer length scale (Mn = 2200 and 6000), two relaxations are observed and the dynamic of microemulsion speeds up. We used the small angle X-ray scattering technique to monitor the size and the polydispersity of the mixture system (AOT microemulsion/PEG).  相似文献   

7.
Enzymatic hydrolysis of a model triglyceride, palm oil, was carried out with lipase fromRhizopus sp. in microemulsions with varying water content. The microemulsions were based on a nonionic surfactant, pentaethylene glycol monododecyl ether (C12 EO5), buffered water solution and an oil component consisting of isooctane and palm oil at a weight ratio of 20:1. The structure of the microemulsions was characterized using Fourier transform pulsed-gradient spin-echo1H NMR. The rate of reaction decreased as the water content of the reaction medium was increased. The self-diffusion coefficient of water, Dw was found to be constant within the interval 1–20% water. The difference in reactivity is believed to be due to a difference in structure of the palisade layer between water and hydrocarbon microdomains. The nonionic surfactant was demonstrated to be unsuitable for enzymatic reactions since only partial hydrolysis was obtained in all experiments. The surfactant, however, did not cause enzyme deactivation, even at very high concentrations.  相似文献   

8.
Various physico-chemical properties of films prepared from PP/PE blends are investigated and compared with those of homopolymers. Crystallographic structure and morphology of films are correlated with the properties studied. Special emphasis is made toward investigation of dependences between the structure and the properties: electrical, mechanical as well as water sorption.  相似文献   

9.
Fluorescent labeling based on silica nanoparticles facilitates unique applications in bioanalysis and bioseparation. Dye-doped silica nanoparticles have significant advantages over single-dye labeling in signal amplification, photostability and surface modification for various biological applications. We have studied the formation of tris(2,2'-bipyridyl)dichlororuthenium(II) (Ru(bpy)) dye-doped silica nanoparticles by ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in water-in-oil microemulsion. The fluorescence spectra, particle size, and size distribution of Ru(bpy) dye-doped silica nanoparticles were examined as a function of reactant concentrations (TEOS and ammonium hydroxide), nature of surfactant molecules, and molar ratios of water to surfactant (R) and cosurfactant to surfactant (p). The particle size and fluorescence spectra were dependent upon the type of microemulsion system chosen. The particle size was found to decrease with an increase in concentration of ammonium hydroxide and increase in water to surfactant molar ratio (R) and cosurfactant to surfactant molar ratio (p). This optimization study of the preparation of dye-doped silica nanoparticles provides a fundamental knowledge of the synthesis and optical properties of Ru(bpy) dye-doped silica nanoparticles. With this information, these nanoparticles can be easily manipulated, with regard to particle size and size distribution, and bioconjugated as needed for bioanalysis and bioseparation applications.  相似文献   

10.
The dependence of thermal conductivity of polymer composites based on Viksint PK-68 on the dispersion composition of such fillers as powders of silicon carbide and microdiamonds has been studied. It has been shown that the thermal conductivity of polymeric compositions depends on the gradient of fractions in the powders of fillers.  相似文献   

11.
Nanometer-sized indium oxide (In(2)O(3)) particles have been prepared by chemical reaction of inorganic indium compounds and ammonia gas in a reverse microemulsion system consisting of water, Triton X-100 (surfactant), n-heptanol (co-surfactant), and n-octane (oil). Precursor hydroxides precipitated in the droplets of water-in-oil (W/O) microemulsion were calcined at different temperatures to form indium oxide powder. The factors affecting the particle size have been discussed; the calcination temperature is considered to be the important factor for controlling the size. In(2)O(3) calcined at 400 degrees C had a spherical form and a narrow size distribution. Calcination at 800 degrees C led to the formation of particles not only of irregular shape, but also of a wide size distribution. With the increase in calcination temperature from 400 to 800 degrees C, the average size of the particles grew from 7 to about 40 nm. The species of reactants used in the aqueous phase had a significant effect on the size of the particles. The average diameter of In(2)O(3) particles derived from reactant InCl(3) was 7 nm; that of particles derived from In(NO(3))(3) was 15 nm. The In(2)O(3) nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. The phase behavior of the microemulsions is discussed.  相似文献   

12.
Microemulsions have been widely used as microreactors for the synthesis of nanoparticles and mesoporous materials. The correlation between the microstructure of a microemulsion and the features of the obtained materials is the most intriguing problem. On this point, many investigations have their ground on the structure of the precursor microemulsion, i.e., the system before the reaction takes place. Nevertheless, any reactions usually involve the formation of byproducts (aside from the nanoparticles). Several of these byproducts (e.g., ions, amphiphilic molecules) could modify the microemulsion structure during the course of the reaction. Here we examine the hydrolysis of tetraethoxysilane (TEOS) in the water-in-oil microemulsion hexadecyl-trimethylammonium bromide (CTAB)/pentanol/hexane/water. Conductivity and NMR measurements performed during the course of the reaction, in combination with dynamic light scattering and pulsed field gradient spin-echo NMR investigation performed on the microemulsion upon the addition of ethanol, indicate that a byproduct (ethanol) modifies the microreactor structure. The ethanol produced by the TEOS hydrolysis drives the microemulsion structure from small disconnected reverse micelles toward large connected aggregates until (for high enough ethanol loading) the system phase separates into two coexisting liquid phases (a dense interconnected network and a dilute reverse micellar phase).  相似文献   

13.
14.
We present the heat capacities and electrical conductivities of five [Emim] 1-ethyl-3-methylimidazolium-based ionic liquids: [Emim][BF4] (tetrafluoroborate), [Emim][CF3SO3] (trifluoromethanesulfonate), [Emim][C2N3] (dicyanamide), [Emim][C2H5SO4] (ethylsulfate), and [Emim][MDEGSO4] (2-(2-methoxyethoxy) ethylsulfate). The heat capacities were measured using a differential scanning calorimeter (DSC) over the temperature ranging from (303.2 to 358.2) K. The electrical conductivities were measured over the temperature ranging from (293.2 to 353.2) K using a commercial conductivity meter. The estimated uncertainties of heat capacity Cp and electrical conductivity σ measurements were ±0.015 kJ · kg?1 · K?1 and ±0.001 mS · cm?1, respectively. The measured Cp and σ are presented as a function of temperature. The temperature dependency of the CP value was correlated using an empirical equation. A modified version of VTF-type (Vogel–Tamman–Fulcher) equation was used to describe the temperature dependency of σ values. The correlations give satisfactory results. Also, the results of this study are in good agreement with the available literature data. The heat capacities and electrical conductivities presented in this work are in good agreement with the available literature data. The results of this study can be applied to numerous chemical processes, since Cp and σ data are essential information for rational design.  相似文献   

15.
The polypropylene‐g‐polystyrene (PP‐g‐PS) copolymers with different grafting ratios are used as compatibilizers to control the size of polystyrene (PS) particles at nanometer scale in polypropylene (PP) matrix. Then the PP/PS insulating nanocomposites (containing 10 wt % PS calculated from PS and PP‐g‐PS) are manufactured. With the increase in grafting ratio of PP‐g‐PS, the size of PS particle is reduced and the interfacial adhesion is enhanced. Meanwhile, the dielectric properties, DC breakdown strength and volume resistivity are increased with the decreasing of PS particle size. The spherulite size of PP is decreased and the boundary between crystals and amorphous regions is blurred or even disappears due to the presence of PS nanoparticles. This evolution of PP structure is attributed to the serious entanglements of PP and PS molecular chains. Finally, the correlation between morphological structure and electrical properties is ultimately established based on the in‐depth understanding of the molecular chain movement, crystal structure, and phase morphology. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 706–717  相似文献   

16.
Conducting Langmuir-Blodgett films of hexadecyl-TCNQ and heptadecyl dimethyl-TTF mixture in the ratios from 1:1 to 1:2.5 are studied. Temperature dependence of film conductivity possesses some specific features. Strong increase of conductivity and decrease of activation energy take place after annealing at 307–315 K. On the other hand, the film loses conductance after heating above 315 K. To explain this behaviour the investigations of conducting multilayers by means of electron diffraction, electron microscopy, and X-ray small-angle scattering were carried out. Some relations between changes of electrical properties and structural transformations are ascertained.  相似文献   

17.
Highly porous rigid polybenzoxazole (PBO) network films were prepared using a precursor-mediated fabrication method. The obtained PBO network films possessed high porosities of ~40%, as calculated from their apparent densities. In addition, the 5%-weight-loss temperatures of the films were ≥570°C under nitrogen atmosphere, demonstrating an excellent thermal stability. The electrical conductivities of the obtained PBO network films and phosphoric-acid-doped PBO network films were also evaluated. In addition, PBO network films containing pyridine rings were prepared and subjected to phosphoric acid doping. The resultant films were found to exhibit the highest conductivities of the films considered in this study owing to proton conduction both between phosphate groups and between the pyridine rings. The highest conductivity was found for a film prepared from a phosphoric-acid-doped PBO network containing pyridine rings, that is, 2.09 × 10?1 S/cm at 150°C, which was higher than that of Nafion ? . Therefore, these films can be used at higher temperatures than that of Nafion ? .  相似文献   

18.
The structure of a microemulsion mixed with polymer networks was investigated by means of small-angle neutron scattering (SANS). The system consists of nonionic surfactant, polymer network, oil, and water. The microemulsion and the polymer network employed in this work are known to undergo temperature-induced structural transition and volume phase transition, respectively. Polymer solutions and gels were made by polymerizing monomer solutions in the presence of microemulsion droplets. In the case of a mixture of an N-isopropylacrylamide (NIPA) monomer solution and a microemulsion, the NIPA monomer was found to behave as a cosurfactant. However, polymerization resulted in a phase separation to polymer-rich and -poor phases. Interestingly, SANS results indicated that a well-developed ordered structure of oil domains was formed in polymer network and the structure was very different from its parent systems. Furthermore, the system underwent two different types of structural transitions with respect to temperature. One was originated from the structural transition of microemulsion due to the change of the spontaneous curvature and the other from the volume phase transition of the NIPA gel.  相似文献   

19.
The synthesis of Mg2Al-Cl layered double hydroxide (LDH) nanosheets in a surfactant-free reverse microemulsion is described. The microemulsion was composed of toluene, isopropanol, and an aqueous solution as the dispersed phase. An aqueous LDH nanosheet dispersion was obtained by a double-microemulsion technique. LDH nanosheets were characterized by X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and thermogravimetric and elemental analyses. The LDH nanosheets consisted of a single brucite layer without any loading of organic molecules. To the best of our knowledge, this is the first report of a naked LDH monolayer aqueous dispersion being directly obtained. The LDH monolayers can be used as building blocks for LDH-based functional materials.  相似文献   

20.
Varying ionic liquid, 1-ethyl 3-methyl imidazolium acetate, pretreatment incubation temperature on lignocellulosic biomass substrates, corn stover, switchgrass and poplar, can have dramatic effects on the enzymatic digestibility of the resultant regenerated biomass. In order to delineate the chemical and physical changes resulting from the pretreatment process and correlate changes with enzymatic digestibility, X-ray powder and fiber diffraction, 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy, and compositional analysis was completed on poplar, corn stover and switchgrass samples. Optimal pretreatment incubation temperatures were most closely associated with the retention of amorphous substrates upon drying of regenerated biomass. Maximal glucan to glucose conversion for 24 h enzyme hydrolysis was observed for corn stover, switchgrass and poplar at ionic liquid incubation temperatures of 100, 110 and 120 °C, respectively. We hypothesize that effective pretreatment temperatures must attain lignin redistribution and retention of xylan for optimal enzyme digestibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号