首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effect of the lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 has been investigated via solution method. The morphology, structure, and electrochemical properties of the bare and coated LiNi1/3Co1/3Mn1/3O2 are characterized by scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and charge–discharge tests. The results showed that the lattice structure of LiNi1/3Co1/3Mn1/3O2 is not changed after coating. The coating sample shows good high-rate discharge performance (148 mAh g−1 at 5.0 C rate) and cycling stability even at high temperature (with the capacities retention about 99% and 87% at room and elevated temperature after 50 cycles). The Li+ diffusion coefficient is also largely improved, while the charge transfer resistance, side reactions within cell, and the erosion of Hydrofluoric Acid all reduced. Consequently, the good electrochemical performances are obtained.  相似文献   

2.
Layered LiNi1/3Co1/3Mn1/3O2 nanoparticles were prepared by modified Pechini method and used as cathode materials for Li-ion batteries. The pyrolytic behaviors of the foamed precursors were analyzed by use of simultaneous thermogravimetric and differential thermal analysis (TG-DTA). Structure, morphology and electrochemical performance characterization of the samples were investigated by X-ray diffraction (XRD), field emission scanning electron macroscopy(SEM), Brunauer-Emmett-Teller (BET) specific surface area and charge–discharge tests. The results showed that the samples prepared by modified Pechini method caclined at 900 °C for 10 h were indexed to pure LiNi1/3Co1/3Mn1/3O2 with well hexagonal structure. The particle size was in a range of 100–300 nm. The specific surface area was larger than that of the as-obtained sample by Pechini method. Initial discharge capacity of 163.8 mAh/g in the range 2.8–4.4 V (vs. Li/Li+) and at 0.1C for LiNi1/3Co1/3Mn1/3O2 prepared by modified Pechini method was obtained, higher than that of the sample prepared by Pechini method (143.5 mAh/g). Moreover, the comparison of electrochemical results at different current rates indicated that the sample prepared by modified Pechini method exhibited improved rate capability.  相似文献   

3.
Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g?1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.  相似文献   

4.
Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g?1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g?1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g?1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.  相似文献   

5.
Effect of secondary particle fracture on the accumulated cycle capacity fade of LiNi1-x-yCoxMnyO2 cathode is difficult to evaluate since performance degradation of electrode material is always caused by several factors simultaneously. Herein, LiNi0.5Co0.2Mn0.3O2 single particles (Sin-P) are prepared and introduced as a reference to understand the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi0.5Co0.2Mn0.3O2 secondary particles (Sec-P). Sec-P exhibited accumulated cycle capacity fade compared to Sin-P when cycled at high rate, high voltage, and high temperature. The accumulated cycle capacity fade was mainly caused by the secondary particle fracture of Sec-P, which was confirmed by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM) analysis. Further, XPS and electrochemical impedance spectroscopy (EIS) analysis indicated that the surface property changes and resistance rise were responsible for the accumulated cycle capacity fade. The study provides a novel way to analyze the accumulated cycle capacity fade caused by the secondary particle fracture and is helpful for understanding the performance degradation mechanism of electrode material.  相似文献   

6.
The surface of LiNi1/3Mn1/3Co1/3O2 was coated with amorphous carbon to enhance the conductivity of the material. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. When carbon was coated on the surface, the LiNi1/3Mn1/3Co1/3O2 cathode material showed an improved rate capability, thermal stability, and cycle performance.  相似文献   

7.
Spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode materials with different microstructure have been prepared by a continuous carbonate co-precipitation method using LiOH⋅H2O, Li2CO3, CH3COOLi⋅2H2O and LiNO3 as lithium source. The effects of Li source on the physical and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The results show that the morphology, tap density and high rate cycling performance of Li[Ni1/3Co1/3Mn1/3]O2 spherical particles are strongly affected by Li source. Among the four Li sources used in this study, LiOH⋅H2O is beneficial to enhance the tap density of Li[Ni1/3Co1/3Mn1/3]O2, and the tap density of as-prepared sample reaches 2.32 g cm−3. Meanwhile, Li2CO3 is preferable when preparing the Li[Ni1/3Co1/3Mn1/3]O2 with high rate cycling performance, upon extended cycling at 1 and 5C rates, 97.5% and 92% of the initial discharge capacity can be maintained after 100 cycles.  相似文献   

8.
In order to shorten process time and possibly reduce synthesis cost of LiNi1/3Co1/3Mn1/3O2, the cathode material was prepared by solution combustion and microwave synthesis routes with reduced duration of calcination. The products were also surface-modified with Al2O3 by a mechano-thermal coating process to enhance cyclability. The structure and morphology of the bare and the surface-modified LiNi1/3Co1/3Mn1/3O2 samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, and differential scanning calorimetry techniques. At a 0.1-C rate and between 4.6 and 2.5 V, the products delivered a first-cycle discharge capacity of as much as 195 mA h/g. Surface modification of LiNi1/3Co1/3Mn1/3O2 with alumina resulted in improved cyclability.  相似文献   

9.
α-NaFeO2 layered LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized by mechanical milling accompanied by the solid phase sintering. The sample exhibited a good crystallinity and layered structure while sintered at 900°C, which can be further improved by adding a pre-sintering process at 500°C before high temperature sintering. The sample with a pre-sintering process presents an average particle size about 0.6 μm, and a hexagonal crystalline structure. The optimally fabricated sample showed a first charge capacity of 210.2 mA h/g, discharge capacity of 171.2 mA h/g with a current rate of 0.2 C within the voltage range of 2.7~4.5 V. With increasing the current rate to 1 C, the charge–discharge capacity faded quickly during the cycling process, which can be partially recovered while operated at a low current rate. However, the capacity fading at a current rate of 2 C was largely irreversible. The evolution of the surface chemical states was evaluated using X-ray photoelectron spectroscopy on the charged and discharged samples to understand the high rate capacity fading.  相似文献   

10.
Complex metal oxides with the composition LiNi0.33Mn0.33Co0.33O2 prepared by various methods: sol–gel method, solid-phase method, and thermal destruction of metal-containing compounds in oil were studied. The results of elemental analysis, TGA/DSC, powder X-ray diffraction, SEM, TEM, as well as the results of electrochemical testing of the cathodes based on the obtained materials are presented. The complex metal oxides LiNi0.33Mn0.33Co0.33O2 prepared by sol–gel processes and thermal destruction of metal-containing compounds in oil consist of primary nanosized crystallites with an average size of 90 nm covered by a nanometer carbon layer, which improves the electrochemical characteristics of lithium ion batteries.  相似文献   

11.
In this paper, La0.4Ca0.6CoO3-coated LiNi1/3Mn1/3Co1/3O2 is successfully prepared by the sol–gel method associated with microwave pyrolysis method. The structure and electrochemical properties of the La0.4Ca0.6CoO3-coated LiNi1/3Co1/3Mn1/3O2 are investigated by using X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. XRD analyses show that the La0.4Ca0.6CoO3 coating does not change the structure of LiNi1/3Co1/3Mn1/3O2. The electrochemical performance studies demonstrate that 2 wt.% La0.4Ca0.6CoO3-coated LiNi1/3Co1/3Mn1/3O2 powders exhibit the best electrochemical properties, with an initial discharge capacity of 156.9 mAh g–1 and capacity retention of 98.9 % after 50 cycles when cycled at a current density of 0.2 C between 2.75 and 4.3 V. La0.4Ca0.6CoO3 coating can improve the rate performance because of the enhancement of the surface electronic/ionic transportation by the coating layer. EIS results suggest that the coating La0.4Ca0.6CoO3 plays an important role in suppressing the increase of cell impedance with cycling especially for the increase of charge-transfer resistance.  相似文献   

12.
In order to study the influence of multiple ions doping into single-site on the structure and electrochemical properties of Ni-rich layered-structure cathode material LiNi0.5Co0.2Mn0.3O2, the coprecipitation of hydroxides was applied to synthesize Mg, Al co-doped cathode material LiNi0.5Co0.2Mn0.3–x Mg1/2x Al1/2x O2 (x = 0.00, 0.01, 0.02, 0.04) in this paper. Morphology and structure, kinetic parameter, impedance and electrochemical performance of the material were respectively characterized by SEM, XRD, CV, EIS and galvanostatic charge/discharge test. The results of comprehensive analysis showed that the properties of material were improved obviously when the amount of doping was 0.02. At this amount of doping, the corresponding material has smaller cation mixing, higher hexagonal ordering of layered-structure, larger Li+ ion diffusion coefficients which are 2.444 × 10–10 and 4.186 × 10–10 cm2 s–1 for Li+ intercalation and deintercalation respectively, smaller impedance which is 33.93 Ω, higher specific capacity of first-discharge which is 168.01 mA h g–1 and higher capacity retention rate which is up to 95.06% after 20 cycles at 0.5 C (100 mA g–1).  相似文献   

13.
LiNi(1/3)Mn(1/3)Co(1/3)O2具有很高的理论比容量,但是三元正极材料在高电压下长循环时,其表面结构发生较大的衰退,导致电池的循环性能和倍率性能变差。本文采用耐高电压且结构稳定的富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2可以有效改善材料的电化学性能。通过XRD、SEM、XPS和TEM等手段对包覆后的材料进行分析,证实了在LiNi(1/3)Mn(1/3)Co(1/3)O2的表面形成了10nm厚的均匀Li4Mn5O(12)的包覆层;在循环100圈后,包覆后的LiNi(1/3)Mn(1/3)Co(1/3)O2仍具有179.5m Ah/g的放电比容量和88.6%容量保持率,明显高于未包覆的LiNi(1/3)Mn(1/3)Co(1/3)O2的78.3%容量保持率。因此,利用富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2为实现更高能量密度的锂离子电池提供了新的途径。  相似文献   

14.
In this paper, the LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining process. The use of a spray-drying process to form particles, followed by a calcination treatment at the optimized temperature of 750 °C to produce spherical LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific surface area of 60.1 m2 g?1, a tap density of 1.15 g mL?1, and a specific capacity of 132.9 mAh g?1 at 0.1 C. The carbon nanofragment (CNF) additives, introduced into the spheres during the co-precipitation spray-drying period, greatly enhance the rate performance and cycling stability of LiNi0.5Mn1.5O4. The sample with 1.0 wt.% CNF calcined at 750 °C exhibits a maximum capacity of 131.7 mAh g?1 at 0.5 C and a capacity retention of 98.9% after 100 cycles. In addition, compared to the LiNi0.5Mn1.5O4 material without CNF, the LiNi0.5Mn1.5O4 with CNF demonstrates a high-rate capacity retention that increases from 69.1% to 95.2% after 100 cycles at 10 C, indicating an excellent rate capability. The usage of CNF and the synthetic method provide a promising choice for the synthesis of a stabilized LiNi0.5Mn1.5O4 cathode material.
Graphical Abstract Micro/nanostructured LiNi0.5Mn0.5O4 cathode materials with enhanced electrochemical performances for high voltage lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining routine and using carbon nanofragments (CNFs) as additive.
  相似文献   

15.
A series of the mixed transition metal compounds, Li[(Ni1/3Co1/3Mn1/3)1–x-y Al x B y ]O2-z F z (x = 0, 0.02, y = 0, 0.02, z = 0, 0.02), were synthesized via coprecipitation followed by a high-temperature heat-treatment. XRD patterns revealed that this material has a typical α-NaFeO2 type layered structure with R3- m space group. Rietveld refinement explained that cation mixing within the Li(Ni1/3Co1/3Mn1/3)O2 could be absolutely diminished by Al-doping. Al, B and F doped compounds showed both improved physical and electrochemical properties, high tap-density, and delivered a reversible capacity of 190 mAh/g with excellent capacity retention even when the electrodes were cycled between 3.0 and 4.7 V.  相似文献   

16.
A facile method for the surface modification of high-voltage and high-temperature LiNi0.8Co0.1Mn0.1O2 cathode materials is demonstrated. In order to prepare polypyrrole (PPy) coating LiNi0.8Co0.1Mn0.1O2 material, the facile chemical polymerization method uses Fe(III) tosylate as oxidant and ethanol as solvent to avoid the side reaction with solvent. TEM depicts that LiNi0.8Co0.1Mn0.1O2 serves as hard template and the nanoscale PPy layer grows along the surface of LiNi0.8Co0.1Mn0.1O2 during the synthesis process. Because of flocculent and nanofiber coating layer, much improved rate performance, high temperature cycling, as well as high voltage performance are obtained. Cyclic voltammetry (CV) and electrochemical impedance spectroscopic (EIS) results demonstrate that the PPy coating layer effectively alleviates the side reactions between liquid electrolytes and LiNi0.8Co0.1Mn0.1O2 surface that are highly unstable at high temperature and high charge voltage.  相似文献   

17.
Nb-doped cathode materials with the formula Li(Ni0.7Mn0.3)1?xNbxO2 (x?=?0, 0.01, 0.02, 0.03, 0.04) have been prepared successfully by calcining the mixtures of LiOH·H2O, Nb2O5, and Ni0.7Mn0.3(OH)2 precursor formed through a simple continuous co-precipitation method. The effects of Nb substitution on the crystal structure and electrochemical properties of LiNi0.7Mn0.3O2 were studied systematically by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and various electrochemical measurements. The results show that the lattice parameters of the Nb substitution LiNi0.7Mn0.3O2 samples are slightly larger than that of pure LiNi0.7Mn0.3O2, and the basic α-NaFeO2 layered structure does not change with the Nb doping. What’s more, better morphology, lower resistance, and good cycle stability were obtained after Nb substitution. In addition, CV test exhibits that Nb doping results in lower electrode polarization and XPS results indicate that the valence of Mn kept constant but the component of Ni3+ decreased after doping. All the results indicate that Nb doping in LiNi0.7Mn0.3O2 is a promising method to improve the properties of Ni-rich lithium-ion batteries positive-electrode materials.  相似文献   

18.
LiNi1/3Co1/3Mn1/3O2 cathode materials for the application of lithium ion batteries were synthesized by carbonate co-precipitation routine using different ammonium salt as a complexant. The structures and morphologies of the precursor [Ni1/3Co1/3Mn1/3]CO3 and LiNi1/3Co1/3Mn1/3O2 were investigated through X-ray diffraction, scanning electron microscope, and transmission electron microscopy. The electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were examined using charge/discharge cycling and cyclic voltammogram tests. The results revealed that the microscopic structures, particle size distribution, and the morphology properties of the precursor and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 were primarily dependent on the complexant. Among all as-prepared LiNi1/3Co1/3Mn1/3O2 cathode materials, the sample prepared from Na2CO3–NH4HCO3 routine using NH4HCO3 as the complexant showed the smallest irreversible capacity of 19.5 mAh g−1 and highest discharge capacity of 178.4 mAh g−1 at the first cycle as well as stable cycling performance (98.7% of the initial capacity was retained after 50 cycles) at 0.1 C (20 mA g−1) in the voltage range of 2.5–4.4 V vs. Li+/Li. Moreover, it delivered high discharge capacity of over 135 mAh g−1 at 5 C (1,000 mA g−1).  相似文献   

19.
Self-supported and binder-free electrodes based on homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies (Co3O4/co-modified TiO2 nanotube arrays (m-TNAs)) are prepared via a simple and cost-effective method in this paper. The highly ordered TNAs offer direct pathways for electron and ion transport and can be used as 3D substrate for the decoration of electroactive materials without any binders. Then, by a facile one-step calcination process, the electrochemical performance of the as-obtained carbon layer and oxygen vacancy m-TNAs is approximately 83 times higher than that of pristine TNAs. In addition, Co3O4 nanoparticles are uniformly deposited onto the m-TNAs by a universal chemical bath deposition (CBD) process to further improve the supercapacitive performance. Due to the synergistic effect of m-TNAs and Co3O4 nanoparticles, a maximum specific capacitance of 662.7 F g?1 can be achieved, which is much higher than that of Co3O4 decorated on pristine TNAs (Co3O4/TNAs; 166.2 F g?1). Furthermore, the specific capacitance retains 86.0 % of the initial capacitance after 4000 cycles under a high current density of 10 A g?1, revealing the excellent long-term electrochemical cycling stability of Co3O4/m-TNAs. Thus, this kind of heterostructured Co3O4/m-TNAs could be considered as promising candidates for high-performance supercapacitor electrodes.  相似文献   

20.
A new composite electrode material with iron-manganic oxide coating (Fe-Mn/Mn2O3) was prepared, and its catalytic performance for oxidizing cyclohexanol was investigated in this work. The new electrode material, based on iron substrate covered with electrolytic manganese, was obtained by further coating the manganese surface with 50 % manganese nitrate solution and then conducting program thermal decomposition treatment. X-ray diffraction (XRD) was used to determine the surface crystal phase compositions, which were Mn and Mn2O3. The catalytic results showed an excellent electrocatalytic performance on the oxidation of cyclohexanol, and the main products were cyclohexanone and hexanedioic acid. According to our experiment results and the literature reports, the existence of mixed valent MnIII and MnIV played a key role in the electrocatalytic oxidation process. A probable process was proposed: the MnIV seized the hydrogen from cyclohexanol, the resulting cyclohexaneoxy radical was oxidized into cyclohexanone, and then the absorbed cyclohexanone was further oxidized into hexanedioic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号