首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper establishes the integral theory for the dynamics of nonlinearnonholonomic system in noninertial reference frame.Firstly,based on the Routhequation of the relative motion of nonlinear nonholonomic system gives the firstintegral of the system.Secondly,by using cyclic integral or energy integral reduces theorder of the equation and obtains generalized Routh equation and Whittaker equationrespectively.Thirdly,derives canonical equation and variation equation and by usingthe first integral constructs integral invariant.And then,establishes the basic integralvariants and the integral invariant of Poincare-Cartan type.Finally,we give a series ofdeductions.  相似文献   

2.
This paper uses Poincaré formalism to obtain a generalization of the Hamilton-Jacobi method of integrating dynamical systems moving with nonlinear nonholonomic constraints. Necessary and sufficient conditions are investigated for the applicability of this method to such systems. The method is illustrated by considering some concrete examples of nonholonomic systems.  相似文献   

3.
吴润衡  邹杰涛 《力学季刊》2000,21(3):331-336
本文研究质量非完整系统的Lie对称性逆问题:根据已知积分求相应的Lie对称性,具体研究了受Chetaev型和非Chetaev型非完整约束的变质量系统的Lie对称性逆问题。首先,根据Lie对称所满足的确定方程和限制方程,给出Lie对称的结构方程和相应的守恒量及其表达式;其次,由已知守恒量求出相应的Noether对称性;最后,根据Noether对称性求出相应的Lie对称性。  相似文献   

4.
非定常非完整力学系统的稳定性研究是重要而又困难的问题,直接从微分方程出发来构造李雅普诺夫函数往往很难实现.本文给出了一种间接方法.提出了10类广义梯度系统的定义,并分别给出了10类广义梯度系统的微分方程.进一步研究一般切塔耶夫型非完整系统的广义梯度表示,给出该系统分别成为这10类广义梯度系统的条件,从而将切塔耶夫型非完整系统化成各类广义梯度系统.最后利用广义梯度系统的性质来研究切塔耶夫型非完整系统零解的稳定性.这种方法在直接构造李雅普诺夫函数发生困难时,显得更为有效.举例说明结果的应用.  相似文献   

5.
This paper presents one type of integrals and its condition of existence for theequations Of motion of higher-order nonholonomic systems,including I-order integral(generalized energy integral),2-order integral and p-order integral(P>2).All of theseintegrals can be constructed by the Lagrangianfunction of the system.Two examples aregiven to illustrate the application of the suggested method.  相似文献   

6.
Normal modes for piecewise linear vibratory systems   总被引:2,自引:0,他引:2  
A method to construct the normal modes for a class of piecewise linear vibratory systems is developed in this study. The approach utilizes the concepts of Poincaré maps and invariant manifolds from the theory of dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a series form around an equilibrium point of interest, the present method expands the normal modes in a series form of polar coordinates in a neighborhood of an invariant disk of the system. It is found that the normal modes, modal dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom example is used to demonstrate the method.  相似文献   

7.
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D’Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 9, pp. 106–115, September 2006.  相似文献   

8.
Lyapunov's first method, extended by V. V. Kozlov to nonlinear mechani- cal systems, is applied to the study of the instability of the position of equilibrium of a mechanical system moving in the field of conservative and dissipative forces. The mo- tion of the system is limited by ideal nonlinear nonholonomic constraints. Five cases determined by the relationship between the degree of the first nontrivial polynomials in Maclaurin's series for the potential energy and the functions that can be generated from the equations of nonlinear nonholonomic constraints are analyzed. In the three eases, the theorem on the instability of the position of equilibrium of nonholonomic systems with linear homogeneous constraints (V. V. Kozlov (1986)) is generalized to the case of nonlin- ear nonhomogeneous constraints. In the other two cases, new theorems are set extending the result from V. V. Kozlov (1994) to nonholonomic systems with nonlinear constraints.  相似文献   

9.
I.IntroductionTheinverseproblemofdynamicsisoneoftheimportantsubjectsinmechanics.In1977,Szebehelysetforthaninverseproblemforthedeterminationofthet'orcefunctiontoamaterialpointintheplanefromparametricfamilyoftrajectories,andobtainedalinearfirstorderpartialdifferentialequationfortheforcefunction.Later,Erdil'l,MellsandPirast=l,MellsandBorgherol'l,BoilsandMertnsl4]extendedSzebehely'sproblemtoboththreeandndimensionalholonomicsystem.Recently,theauthorandProfessorMetFengxiangl'1studiedtheSzebehe…  相似文献   

10.
11.
Our main result consists in proving the representation theorem. Irregular integral is a new type of analytic function, represented by a compound Taylor-Fourier tree series, in which each coefficient of the Fourier series is a Taylor series, while the Taylor coefficients are tree series in terms of equations parameters, higher order correction terms to each coefficient having tree structure with inexhaustible proliferation.The solution obtained is proved to be convergent absolutely and uniformly in the region defined by coefficient functions of the original equation, provided the structure parameter is less than unity. Direct substitution shows that our tree series solution satisfies the equation explicity generation by generation.As compared with classical theory our method not only furnishes explicit expression of irregular integral, leading to the solution of Poincare problem, but also provides possibility of extending the scope of investigation for analytic theory to equations with various kinds of singularities in a unifying way.Exact explicit analytic expression for irregular integrals can be obtained by means of correspondence principle.It is not difficult to prove the convergence of the tree series solution obtained. Direct substitution shows it satisfies the equation.The tree series is automorphic, which agrees completely with Poincaré’s conjecture.  相似文献   

12.
The relationship between chaos and overturning in the rocking response of a rigid object under periodic excitation is examined from both deterministic and stochastic points of view. A stochastie extension of the deterministic Melnikov function (employed to provide a lower bound for the possible chaotic domain in parameter space) is derived by taking into account the presence of random noise. The associated Fokker-Planck equation is derived to obtain the joint probability density functions in state space. It is shown that global behavior of the rocking motion can be effectively studied via the evolution of the joint probability density function. A mean Poincaré mapping technique is developed to average out noise effects on the chaotic response to reconstruct the embedded strange attractor on the Poincaré section. The close relationship between chaos and overturning is demonstrated by examining the structure of the invariant manifolds. It is found that the presence of noise enlarges the boundary of possible chaotic domains in parameter space and bridges the domains of attraction of coexisting responses. Numerical results consistent with the Foguel alternative theorem, which discerns asymptotic stabilities of responses, indicate that the overturning attracting domain is of the greatest strength. The presence of an embedded strange attractor (reconstructed using the mean Poincaré mapping technique) indicates the existence of transient chaotic rocking response.  相似文献   

13.
We study the Conley index over a base in the case when the base is the circle. Such an index arises in a natural way when the considered flow admits a Poincaré section. In that case the fiberwise pointed spaces over the circle generated by index pairs are semibundles, i.e., admit a special structure similar to locally trivial bundles. We define a homotopy invariant of semibundles, the monodromy class. We use the monodromy class to prove that the Conley index of the Poincaré map may be expressed in terms of the Conley index over the circle.  相似文献   

14.
This paper presents a formulation and solution for the inverse problem ofnonholonomic dynamics:to find the form of nonholonomic constraints when someintegrals are given and to find the generalized reactive forces of constraint acting onthe system when the expression of the kinetic energy is given.An example is given toillustrate the application of the result.  相似文献   

15.
On the Global Geometric Structure of the Dynamics of the Elastic Pendulum   总被引:1,自引:0,他引:1  
We approach the planar elastic pendulum as a singular perturbation of the pendulum to show that its dynamics are governed by global two-dimensional invariant manifolds of motion. One of the manifolds is nonlinear and carries purely slow periodic oscillations. The other one, on the other hand, is linear and carries purely fast radial oscillations. For sufficiently small coupling between the angular and radial degrees of freedom, both manifolds are global and orbitally stable up to energy levels exceeding that of the unstable equilibrium of the system. For fixed value of coupling, the fast invariant manifold bifurcates transversely to create unstable radial oscillations exhibiting energy transfer. Poincaré sections of iso-energetic manifolds reveal that only motions on and near a separatrix emanating from the unstable region of the fast invariant manifold exhibit energy transfer.  相似文献   

16.
In this paper, we present a new kind of fractional dynamical equations, i.e. the fractional generalized Hamiltonian equations, and study variation equations and the method of the construction of integral invariants of the system. Based on the definition of Riemann–Liouville fractional derivatives, fractional generalized Hamiltonian equations and its variation equations are established. Then, the relation between first integral and integral invariant of the system is studied, and it is proved that, using a first integral, we can construct an integral invariant of the system. As deductions of above results, a construction method of integral invariants of a traditional generalized Hamiltonian system are given. Further, one example of fractional generalized Hamiltonian system is given to illustrate the method and results of the application. Finally, we study the first integral and integral invariant of the Euler equation of a rigid body which rotates with respect to a fixed-point.  相似文献   

17.
A study is made of the dynamics of oscillating systems with a slowly varying parameter. A slowly varying forcing periodically crosses a critical value corresponding to a pitchfork bifurcation. The instantaneous phase portrait exhibits a centre when the forcing does not exceed the critical value, and a saddle and two centres with an associated double homoclinic loop separatrix beyond this value. The aim of this study is to construct a Poincaré map in order to describe the dynamics of the system as it repeatedly crosses the bifurcation point. For that purpose averaging methods and asymptotic matching techniques connecting local solutions are applied. Given the initial state and the values of the parameters the properties of the Poincaré map can be studied. Both sensitive dependence on initial conditions and (quasi) periodicity are observed. Moreover, Lyapunov exponents are computed. The asymptotic expressions for the Poincaré map are compared with numerical solutions of the full system that includes small damping.  相似文献   

18.
A theorem on the dependence of Poincaré mappings for different functional differential equations (FDEs) on the right-hand side of the equation is proved. Together with recent results on hyperbolic sets for noninvertible mappings, this is used to describe how Poincaré mappings and their complicated behavior in the neighborhood of a transversal homoclinic orbit persist under FDE perturbations of the equation. The method is shown to apply to three example equations, where Poincaré mappings with such behavior are known to exist.  相似文献   

19.
A dicone moving on a pair of cylindrical rails can be considered as a simplified model of a railway wheelset. Taking into account the non-linear friction laws of rolling contact, the equations of motion for this non-linear mechanical system result in a set of differential-algebraic equations. Previous simulations performed with the differential-algebraic solver DASSL, [2], and experiments, [7], indicated non-linear phenomena such as limit-cycles, bifurcations as well as chaotic behaviour. In this paper the non-linear phenomena are investigated in more detail with the aid of special in-house software and the path-following algorithm PATH [10]. We apply Poincaré sections and Poincaré maps to describe the structure of periodic, quasiperiodic and chaotic motions. The analyses show that part of the chaotic behaviour of the non-linear system can be fully understood as a non-linear iterative process. The resulting stretching and folding processes are illustrated by series of Poincaré sections.  相似文献   

20.
One considers, in this paper, the motion of a mechanical system in a nonstationary field of potential and positional forces, subject to the action of rheonomic holonomic and nonholonomic linear homogeneous constraints. Assuming that differential equations of motion of the system considered satisfy the conditions for the existence of Painlevé's integral of energy, formulated in [Painlevé, P., 1897. Leçons sur l'intégration des équations de la Mécanique, Paris] and [Appell, P., 1911. Traité de mécanique rationnelle, T. II, Dynamique des systémes – Mécanique analitique, Gauthier-Villars, Paris] and generalized in [Čović, V., Vesković, M., 2004. On stability of motion of a rheonomic system in the field of potential and positional forces, BAMM-1720/2004, No-2233, 93–100] and [Čović, V., Vesković, M., 2005. Hagedorn's theorem in some special cases of rheonomic systems. Mechanics Research Communications 32 (3), 265–280], the original mechanical system is substituted by an equivalent one whose Lagrangian function, nontransformed with respect to nonholonomic constraints, does not depend on time explicitly. Using the properties of the equivalent system, which, in contrast to the original one, moves in a stationary field of potential forces and in a nonstationary field of gyroscopic forces, the definition of cyclic coordinates is generalized, as well as sufficient conditions for the existence of (cyclic) first integrals, corresponding to coordinates mentioned and linear in velocities are established. Further, the conditions for the existence of steady motion of the system considered are found. In the case of existence of such a motion of the system, the Theorem of Routh's type on stability of that motion, based on the minimum of reduced potential for which it is shown that, in contrast to known cases (see, for example, [Gantmacher, F., 1975. Lectures in Analytical Mechanics. Mir Publisher, Moscow; Neimark, J., Fufaev, N., 1972. Dynamics of Nonholonomic Systems. Amer. Math. Soc., Providence, RI; Pars, L., 1962. An Introduction to Calculus of Variations. Heinemann, London; Karapetyan, A., Rumyantsev, V., 1983. Stability of conservative and dissipative systems. In: Itogi Nauki I Tekhniki: Obschaya Mekh., vol. 6, VINITI, Moscow, pp. 3–128 (in Russian)]), it includes the influence of the positional forces field, is formulated. Thus, the Routh's Theorem on stability of steady motion of a conservative mechanical system is extended to the case of a nonconservative system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号