首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This paper presents two deterministic inventory models for a single item, where for the first model, the production rate at any instant depends on the on-hand inventory and for the second one, it is demand dependent. However, in both cases, the demand rate at any moment of time is a linear function of time for the scheduling period. Both the models are formulated and solved without allowing shortages. Two numeric examples have been added to illustrate the results.  相似文献   

2.
In this paper we study a system composed of a supplier and buyer(s). We assume that the buyer faces random demand with a known distribution function. The supplier faces a known production lead time. The main objective of this study is to determine the optimal delivery lead time and the resulting location of the system inventory. In a system with a single-supplier and a single-buyer it is shown that system inventory should not be split between a buyer and supplier. Based on system parameters of shortage and holding costs, production lead times, and standard deviations of demand distributions, conditions indicating when the supplier or buyer(s) should keep the system inventory are derived. The impact of changes to these parameters on the location of system inventory is examined. For the case with multiple buyers, it is found that the supplier holds inventory for the buyers with the smallest standard deviations, while the buyers with the largest standard deviations hold their own inventory.  相似文献   

3.
Optimal pricing and production in an inventory model   总被引:1,自引:0,他引:1  
This paper deals with the problem of simultaneously determining the optimal price policy and production rate over a given planning horizon. For nonlinear demand functions and convex inventory and shortage cost functions the optimal solution paths are derived by using optimal control theory. The treatment of linear nonsmooth cost functions requires the use of a generalized maximum principle. The solution method is a phase portrait analysis providing insight into the optimal pricing and production policies as well as the resulting inventory paths. Moreover, it is shown that in the case of nonsmooth piecewise linear cost functions the equilibrium is approached within finite time although the model is nonlinear in the control variables. Finally it is illustrated that exogenous fluctuations in the demand rate (seasonal demand pattern) amount to cyclical optimal solutions.  相似文献   

4.
The aim of the present paper is to make use of the modern theory of point processes to study optimal solutions for single‐item inventory. Demand for goods is assumed to occur according to a compound Poisson process and production occurs continuously and deterministically between times of demand, such that the inventory evolves according to a Markov process in continuous time. The aim is to propose a way of finding optimal production schemes by minimizing a certain expected loss over some finite period. There are holding/production costs depending on the stock level, and random penalty amounts will occur due to excess demand which is assumed backlogged. For simplicity we will not incorporate fixed costs. We give some numerical illustrations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In this work the problem of obtaining an optimal maintenance policy for a single-machine, single-product workstation that deteriorates over time is addressed, using Markov Decision Process (MDP) models. Two models are proposed. The decision criteria for the first model is based on the cost of performing maintenance, the cost of repairing a failed machine and the cost of holding inventory while the machine is not available for production. For the second model the cost of holding inventory is replaced by the cost of not satisfying the demand. The processing time of jobs, inter-arrival times of jobs or units of demand, and the failure times are assumed to be random. The results show that in order to make better maintenance decisions the interaction between the inventory (whether in process or final), and the number of shifts that the machine has been working without restoration, has to be taken into account. If this interaction is considered, the long-run operational costs are reduced significantly. Moreover, structural properties of the optimal policies of the models are obtained after imposing conditions on the parameters of the models and on the distribution of the lifetime of a recently restored machine.  相似文献   

6.
This paper deals with a continuous review (s,S) inventory system having one exhibiting item subject to random failure. It is assumed that the demand epochs form a renewal process and the probability distribution of demand magnitudes depend only on the time elapsed since the previous demand. Replenishment of stock is instantaneous. For this model expression for the limiting distribution of position inventory is derived by applying the techniques of semi-regenerative process. Some special cases are discussed in detail  相似文献   

7.
In this paper we determine optimal reduction in the procurement lead time duration for some stochastic inventory models, jointly with the optimal ordering decisions. The models are developed with complete and partial information about the lead time demand distribution. The stochastic models analyzed in this paper are the classical continuous and periodic review models with a mixture of backorders and lost sales and the base stock model. For each of these models, we provide sufficient conditions for the uniqueness of the optimal operating policy. We also develop algorithms for solving these models and provide illustrative numerical examples.  相似文献   

8.
The paper gives a new approach towards a two––item inventory model for deteriorating items with a linear stock––dependent demand rate. In fact, for the first time, the interacting terms showing the mutual increase in the demand of one commodity due to the presence of the other is accommodated in the model. Again, from the linear demand rate, it follows that more is the inventory, more is the demand. So a control parameter is introduced, such that it maintains the continuous supply to the inventory. Next an objective function is formed to calculate the net profit with respect to all possible profits and all possible loss (taken with negative sign). The paper obtains a necessary criterion for the steady state optimal control problem for optimizing the objective function subjected to the constraints given by the ordinary differential equations of the inventory. It also considers a particular choice of parameters satisfying the above necessary conditions. Under this choice, the optimal values of control parameters are calculated; also the optimal amount of inventories is found out. Finally, with respect to these optimal values of control parameters and those of the optimal inventories, the optimal value of the objective function is determined.Next another choice of parameters is considered for which the aforesaid necessary conditions do not hold. Obviously, in that case the steady state solution is non-optimal. In such a case a suboptimal problem is considered corresponding to the more profitable inventory. It is shown that such suboptimal steady state solution fails to exist in this case.  相似文献   

9.
A generalized production lot size inventory model for deteriorating items over a finite planning horizon is considered. The demand, production, and deteriorating rates are assumed to be known and continuous functions of time. Shortages are allowed and completely backlogged. The conditions under which the system total cost attains its (unique) global minimum are derived. An example which illustrate the applicability of theoretical results is also introduced.  相似文献   

10.
Past research on inventory management of perishables introduced models in which demand is sensitive to the age of the product. For such models, we prove that a fixed-order quantity policy is optimal under certain conditions and show that its expected cost is closer to optimal than that of the base-stock level policy when there is demand for units of all ages. We also show numerically when substituting older products to fulfill the demand for new (or vice versa) is beneficial.  相似文献   

11.
We model a make-to-stock production system that utilizes permanent and contingent capacity to meet non-stationary stochastic demand, where a constant lead time is associated with the acquisition of contingent capacity. We determine the structure of the optimal solution concerning both the operational decisions of integrated inventory and flexible capacity management, and the tactical decision of determining the optimal permanent capacity level. Furthermore, we show that the inventory (either before or after production), the pipeline contingent capacity, the contingent capacity to be ordered, and the permanent capacity are economic substitutes. We also show that the stochastic demand variable and the optimal contingent capacity acquisition decisions are economic complements. Finally, we perform numerical experiments to evaluate the value of utilizing contingent capacity and to study the effects of capacity acquisition lead time, providing useful managerial insights.  相似文献   

12.
Item demands at individual retail stores in a chain often differ significantly, due to local economic conditions, cultural and demographic differences and variations in store format. Accounting for these variations appropriately in inventory management can significantly improve retailers’ profits. For example, it is shown that having greater differences across the mean store demands leads to a higher expected profit, for a given inventory and total mean demand. If more than one inventory shipment per season is possible, the analysis becomes dynamic by including updated demand forecasts for each store and re-optimizing store inventory policies in midseason. In this paper, we formulate a dynamic stochastic optimization model that determines the total order size and the optimal inventory allocation across nonidentical stores in each period. A generalized Bayesian inference model is used for demands that are partially correlated across the stores and time periods. We also derive a normal approximation for the excess inventory from the previous period, which allows the dynamic programming formulation to be easily solved. We analyze the tradeoffs between obtaining information and profitability, e.g., stocking more stores in period 1 provides more demand information for period 2, but does not necessarily lead to higher total profit. Numerical analyses compare the expected profits of alternative supply chain strategies, as well as the sensitivity to different distributions of demand across the stores. This leads to novel strategic insights that arise from adopting inventory policies that vary by store type.  相似文献   

13.
In this study, we consider a dynamic economic lot sizing problem for a single perishable item under production capacities. We aim to identify the production, inventory and backlogging decisions over the planning horizon, where (i) the parameters of the problem are deterministic but changing over time, and (ii) producer has a constant production capacity that limits the production amount at each period and is allowed to backorder the unmet demand later on. All cost functions are assumed to be concave. A similar problem without production capacities was studied in the literature and a polynomial time algorithm was suggested (Hsu, 2003 [1]). We assume age-dependent holding cost functions and the deterioration rates, which are more realistic for perishable items. Backordering cost functions are period-pair dependent. We prove the NP-hardness of the problem even with zero inventory holding and backlogging costs under our assumptions. We show the structural properties of the optimal solution and suggest a heuristic that finds a good production and distribution plan when the production periods are given. We discuss the performance of the heuristic. We also give a Dynamic Programing-based heuristic for the solution of the overall problem.  相似文献   

14.
In this paper, we present a method for finding the optimal replenishment schedule for the production lot size model with deteriorating items, where demand and production are allowed to vary with time in an arbitrary way and in which shortages are allowed. The method is illustrated by a numerical example.  相似文献   

15.
This study develops deteriorating items production inventory models with random machine breakdown and stochastic repair time. The model assumes the machine repair time is independent of the machine breakdown rate. The classical optimization technique is used to derive an optimal solution. A numerical example and sensitivity analysis are shown to illustrate the models. The stochastic repair models with uniformly distributed repair time tends to have a larger optimal total cost than the fixed repair time model, however the production up time is less than the fixed repair time model. Production and demand rate are the most sensitive parameters for the optimal production up time, and demand rate is the most sensitive parameter to the optimal total cost for the stochastic model with exponential distribution repair time.  相似文献   

16.
A review is undertaken of lower bounding methodologies for lot-sizing production/inventory models. This is done for both dynamic discrete time demand and continuous review, constant demand situations. The view is taken that lower bounds are an essential ingredient in the evaluation of heuristics when optima are unknown or too computationally complex to comfortably evaluate. Several directions of future research are suggested.  相似文献   

17.
We evaluate the benefits of coordinating capacity and inventory decisions in a make-to-stock production environment. We consider a firm that faces multi-class demand and has additional capacity options that are temporary and randomly available. We formulate the model as a Markov decision process (MDP) and prove that a solution to the optimal joint control problem exists. For several special cases we characterize the structure of the optimal policy. For the general case, however, we show that the optimal policy is state-dependent, and in many instances non-monotone and difficult to implement. Therefore, we consider three pragmatic heuristic policies and assess their performance. We show that the majority of the savings originate from the ability to dynamically adjust capacity, and that a simple heuristic that can adjust production capacity (based on workload fluctuation) but uses a static production/rationing policy can result in significant savings.  相似文献   

18.
Any decentralized retail or wholesale system of competing entities requires a benefit sharing arrangement when competing entities collaborate after their demands are realized. For instance, consider a distribution system similar to the observed behavior of independent car dealerships. If a dealership does not have in stock the car requested by a customer, it might consider acquiring it from a competing dealer. Such behavior raises questions about procurement strategies that achieve system optimal (first-best) outcomes. In this paper, we examine the existence and uniqueness of pure strategy Nash equilibrium (PSNE) for a decentralized system that adopts a transfer payment approach proposed by Anupindi et al. (Manuf. Serv. Oper. Manag. 4(3):349–368, 2001). In particular, we state a set of conditions on cost parameters and distributions that guarantee uniqueness of PSNE and discuss its consequences. We also examine a situation with incomplete information and expand the scope of the earlier models by relaxing the assumption of satisfying local demand first. That is, we allow the retailers to transship their inventory regardless of the local demand status if such transshipment increases retailer’s profit, and observe that this model extension does not affect our results relative to the more restrictive case. In short, our results provide important insights, clarifications, and strategic limitations regarding collaborations in decentralized distribution system.  相似文献   

19.
A disaster inventory system is considered in which two substitutable items are stored for disaster management. In the event of disaster management, a particular product may become stock-out and the situation warrants that a demand for the particular product during its stock-out period may be substituted with another available similar product in the inventory. From the utility point of view, continuous review inventory models are quite appropriate in disaster inventory management. In this paper, a continuous review two substitutable perishable product disaster inventory model is proposed and analyzed. Since the inventory is maintained for disaster management, an adjustable joint reordering policy for replenishment is adopted. There is no lead time and the replenishment is instantaneous. For this model, some measures of system performance are obtained. The stationary behavior of the model is also considered. Numerical examples are also provided to illustrate the results obtained.  相似文献   

20.
The problem of setting prices for clearing retail inventories of fashion goods is a difficult task that is further exacerbated by the fact that markdowns enacted near the end of the selling season have a smaller impact on demand. In this article, we present discrete-time models for setting clearance prices in such an environment. When demand is deterministic, we compute optimal prices and show that decreasing reservation prices lead to declining optimal prices. When demand is stochastic and arbitrarily correlated across planning periods, we obtain bounds on the optimal expected revenue and on optimal prices. We also develop a heuristic procedure for finding near-optimal prices and test its accuracy through numerical experiments. These experiments reveal new insights for practitioners. For example, the penalty for choosing clearance price once and keeping it unchanged for the remainder of the selling season is found to be small when either the mean reservation prices do not change appreciably over time or when they drop sharply after the first period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号