首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the defect of the traditionary boundary layer methods (including the method of matched asymptotic expansions and the method of Visik-Lyusternik) is noted, from those methods we can not construct the asymptotic expansion of boundary layer term substantially. So the method of multiple scales is proposed for constructing the asymptotic expansion of boundary layer term, the reasonable result is obtained. Furthermore, we compare this method with the method used by Levinson, and find that both methods give the same asymptotic expansion of boundary layer term, but our method is simpler.Again, we apply this method to study some known works on singular perturbations. The limitations of those works have been noted, and the asymptotic expansion of solution is constructed in general condition.  相似文献   

2.
轴对称正交异性圆环壳的齐次完全渐近解   总被引:1,自引:0,他引:1  
承受轴对称载荷的正交异性圆环壳的静力分析,归结为求解一非齐次二阶复变量方程.当所含参数μ较大时,常采用渐近解法.因方程含一阶转点,所以求全域一致有效且达到薄壳理论精度的完全渐近解较为困难.过去,齐次解只求到一级近似.本文采用广义Airy函数方法,求出了高级近似.这样,轴对称正交异性圆环壳的齐次解第一次有了达到薄壳理论精度的完全的渐近展开.  相似文献   

3.
We revisit the asymptotic convergence properties—with respect to the thickness parameter—of the earlier-proposed 3D-shell model. This shell model is very attractive for engineering applications, in particular due to the possibility of directly using a general 3D constitutive law in the corresponding finite element formulations. We establish strong convergence results for the 3D-shell model in the two main types of asymptotic regimes, namely, bending- and membrane-dominated behavior. This is an important achievement, as it completely substantiates the asymptotic consistency of the 3D-shell model with 3D linearized isotropic elasticity.  相似文献   

4.
采用塑性动力学方程,对应变损伤材料的平面应力动态裂纹尖端场进行了渐近分析。假定损伤规律服从反比例关系,对平面应力问题,导出了本构方程,并给出了动态弹塑性场的渐近解,揭示了场的渐近特性。  相似文献   

5.
The problem of constructing an asymptotic representation of the solution of the internal gravity wave field excited by a source moving at a velocity close to the maximum group velocity of the individual wave mode is considered. For the critical regimes of individual mode generation the asymptotic representation of the solution obtained is expressed in terms of a zero-order Macdonald function. The results of numerical calculations based on the exact and asymptotic formulas are given.  相似文献   

6.
An asymptotic solution is obtained for the problem of maximizing the torsional rigidity of elastic, multiply-connected cylindrical bars for a given area of cross-section. The shapes of the inner contours of the multiply-connected cross-section are specified while the outer contour is determined as a result of the shape optimization. We apply the method of matched asymptotic expansions to construct a first-order asymptotic model. The conditions for unique solvability of the asymptotic model have been established under some restrictions imposed on the location of the inner contours and their polarization matrices. The economy achieved by optimization is estimated.  相似文献   

7.
A method is proposed to calculate the eigenvalues of the class of nonlinear eigenvalue problems resulting from the problem of determining the stress-strain state in the vicinity of a crack tip in power-law materials over the entire range of mixed modes of deformation, from the opening mode to pure shear. The proposed approach was used to found eigenvalues of the problem that differ from the well-known eigenvalue corresponding to the Hutchinson-Rice-Rosengren solution. The resulting asymptotic form of the stress field is a self-similar intermediate asymptotic solution of the problem of a crack in a damaged medium under mixed loading. Using the new asymptotic form of the stress field and introducing a self-similar variable, we obtained an asymptotic solution of the problem of a crack in a damaged medium and constructed the regions of dispersed material near the crack.  相似文献   

8.
A new method is presented for obtaining asymptotic series expansions of integrals for which the pointwise asymptotic expansions are not valid. The series is used in obtaining the stress field radiated from a nonuniformly moving dislocation near the current position of the dislocation.  相似文献   

9.
The asymptotic behavior of localized two-dimensional perturbations of the surface of a shear discontinuity separating two homogeneous steady flows of ideal incompressible fluid is studied in the linear approximation. The effect of surface tension and gravity forces is taken into account. Mathematically the problem reduces to the investigation by the method of steepest descent of the asymptotic behavior of a double integral for various values of parameters which are the components of the group velocity vector. In this problem the principal difficulty is to find the two-dimensional steepest descent contour in the space of two complex variables that determines which of the various saddle points gives the asymptotic form. First, for the Fourier component with respect to one of the variables with allowance for all the saddle points we find an asymptotic form which parametrically depends on the second variable. The choice of the second variable makes it possible to prove analytically that in the absence of gravity the asymptotic behavior of the growing perturbations is determined by a single saddle point in the plane of that variable. In this way it is possible to justify the authors' previous conclusions [1] concerning the shape of the boundary L of the region D in the group velocity plane occupied by growing perturbations. In the presence of gravity the growth rates of perturbations corresponding to different group velocities are found numerically and the region D occupied by the growing perturbations is indicated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 23–30, March–April, 1985.  相似文献   

10.
This paper is devoted to the study of the problem of exponential asymptotic stability of the rotational motion of a gyrostat using servo-control moments which are applied to the internal rotors. The servo-control moments which impose the rotational motion are obtained. The stabilizing servo-control moments are obtained from the conditions to ensure exponential asymptotic stability of the desired motion. Estimations of the phase coordinations as exponential functions are presented. The method based on a choice of the structural form of the servo-control moments such that the equations of motion reduce to a system of differential equations with exponential asymptotic stability of an special solution.  相似文献   

11.
This paper deals with the asymptotic and numerical analysis for the steady-state transpiration cooling of a thin porous flat plate in a laminar hot convective flow, taking into account the streamwise heat conduction through the plate. For high conductivity plates, a regular perturbation analysis has been carried out, yielding a three-term asymptotic solution for the distribution of plate temperature. In the limit of a very poorly conducting plate, a singular perturbation technique, based on matched asymptotic expansions, is employed to solve the governing equations. We also solved the equations numerically using a quasilinearization technique. The numerical results are in good agreement with the asymptotic solution close to the asymptotic limits studied.  相似文献   

12.
The two-scale asymptotic expression of the solution for the increment of temperature in a structure with a small periodic configuration is presented first, and the two-scale asymptotic expression of the displacement for the structure under the coupled thermoelasticity condition is then derived in this paper. In the asymptotic expressions the two-scale coupled relation between the increment of temperature and displacement is included. The approximate solutions and its error estimations are given. The project supported by the National Natural Science Foundation of China (19932030) and Special Funds for Major State Basic Research Projects  相似文献   

13.
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material lengthl, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient. The project supported by the National Natural Science Foundation of China (19704100), National Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20), CAS K.C. Wong Post-doctoral Research Award Fund and Post-doctoral Science Fund of China  相似文献   

14.
The Garvin–Alterman–Loewenthal solution refers to the problem of a line blast load suddenly applied in the interior of an elastic half-space. It is expected that the long-time asymptotic limit of this solution should be equal to the solution of a related static problem. This expectation is justified here. First, the solution of the static problem is constructed. Then, the asymptotic limit of the transient problem is found, correcting previously published results.  相似文献   

15.
In this paper we consider the asymptotic expression of the solution of the Cauchy's problem for a higher order equation when the limit equation has singularity. In order to construct the asymptotic expression of the solution, the region is divided into three sub-areas. In every small region, the solution of the differential equation is different. Project supported by the National Natural Science Foundation of China  相似文献   

16.
We consider the system of elastostatics for an elastic medium consisting of an imperfection of small diameter, embedded in a homogeneous reference medium. The Lamé constants of the imperfection are different from those of the background medium. We establish a complete asymptotic formula for the displacement vector in terms of the reference Lamé constants, the location of the imperfection and its geometry. Our derivation is rigorous, and based on layer potential techniques. The asymptotic expansions in this paper are valid for an elastic imperfection with Lipschitz boundaries. In the course of derivation of the asymptotic formula, we introduce the concept of (generalized) elastic moment tensors (Pólya–Szegö tensor) and prove that the first order elastic moment tensor is symmetric and positive (negative)-definite. We also obtain estimation of its eigenvalue. We then apply these asymptotic formulas for the purpose of identifying with high precision the order of magnitude of the diameter of the elastic inclusion, its location, and its elastic moment tensors.  相似文献   

17.
In this paper the perturbation method about two parameters is applied to the problem of large deflection of a cricular plate with exponentially varying thickness under uniform pressure. An asymptotic solution up to the third-order is derived. In comparison with the exact solutions in special cases, the asymptotic solution shows a precise accuracy.  相似文献   

18.
A moderate distortion of the initial pulse form which takes place when a one-dimensional longitudinal pulse propagates through a sufficiently small distance in a non-linear hereditary clastic medium is considered. The governing equation is a quasi-linear integro-differential equation. Its first- and second-order asymptotic solutions arc derived with the aid of a method of successive integration of the linear inhomogeneous wave equations. Besides the constants which define the wave speed and the non-linear properties of the medium, the asymptotic solutions suggested in this paper contain two arbitrary functions whose properties are restricted only by certain smoothness conditions. One of them is the kernel function which defines the hereditary properties of the medium. and the other is the function which defines the initial form (shape) of the pulse. An example of the use of the asymptotic solutions is presented in which these two functions are given explicitly.  相似文献   

19.
The asymptotic analysis carried out in this paper for the problem of a multiple scattering in three dimensions of a time-harmonic wave by obstacles whose size is small as compared with the wavelength establishes that the effect of the small bodies can be approximated at any order of accuracy by the field radiated by point sources. Among other issues, this asymptotic expansion of the wave furnishes a mathematical justification with optimal error estimates of Foldy’s method that consists in approximating each small obstacle by a point isotropic scatterer. Finally, it is shown how this theory can be further improved by adequately locating the center of phase of the point scatterers and the taking into account of self-interactions. In this way, it is established that the usual Foldy model may lead to an approximation whose asymptotic behavior is the same than that obtained when the multiple scattering effects are completely neglected.  相似文献   

20.
In this paper we consider the scattering of a wave from an infinite line source by an infinitely long cylinder C. The line source is parallel to the axis of C, and the cross section C of this cylinder is smooth, closed and convex. C is formed by joining a pair of smooth convex arcs to a circle C0, one on the illuminated side, and one on the dark side, so that C is circular near the points of diffraction. By a rigorous argument we establish the asymptotic behavior of the field at high frequencies, in a certain portion of the shadow S that is determined by the geometry of C in S. The leading term of our asymptotic expansion is the field predicted by the geometrical theory of diffraction.Previous authors have derived asymptotic expansions in the shadow regions of convex bodies in special cases where separation of variables is possible. Others, who have considered more general shapes, have only been able to obtain bounds on the field in the shadow. In contrast our result is believed to be the first rigorous asymptotic solution in the shadow of a nonseparable boundary, whose shape is frequency independent.The research for this paper was supported by U.S. National Science Foundation Grant No. GP-7985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号