首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

2.
We consider the problem on the unique solvability of the inverse problem for a nonlinear partial Benney–Luke type integro-differential equation of the fourth order with a degenerate kernel. We modify the degenerate kernelmethod which has been designed for Fredholm integral equations of the second kind to apply to the case of the above-mentioned equation. We exploit the Fouriermethod of separation of variables. By means of designations, the Benney–Luke type integro-differential equation is reduced to a system of algebraic equations. Using an additional condition, we obtain the countable system of nonlinear integral equations with respect to the main unknown function. We employ the method of successive approximations together with the contraction mapping principle. Finally, the restore function is defined.  相似文献   

3.
In this paper, we suggest a convergent numerical method for solving nonlinear delay Volterra integro-differential equations. First, we convert the problem into a continuous-time optimization problem and then use a shifted pseudospectral method to discrete the problem. Having solved the last problem, we can achieve the pointwise and continuous approximate solutions for the main delay Volterra integro-differential equations. Here, we analyze the convergence of the method and solve some numerical examples to show the efficiency of the method.  相似文献   

4.
In this study, the numerical solutions of a system of two nonlinear integro-differential equations, which describes biological species living together, are derived employing the well-known Homotopy-perturbation method. The approximate solutions are in excellent agreement with those obtained by the Adomian decomposition method. Furthermore, we present an analytical approximate solution for a more general form of the system of nonlinear integro-differential equations. The numerical result indicates that the proposed method is straightforward to implement, efficient and accurate for solving nonlinear integro-differential equations.  相似文献   

5.
In this work, we present the method based on radial basis functions to solve partial integro-differential equations. We focus on the parabolic type of integro-differential equations as the most common forms including the ``\emph{memory}'' of the systems. We propose to apply the collocation scheme using radial basis functions to approximate the solutions of partial integro-differential equations. Due to the presented technique, system of linear or nonlinear equations is made instead of primary problem. The method is efficient because the rate of convergence of collocation method based on radial basis functions is exponential. Some numerical examples and investigation of the experimental results show the applicability and accuracy of the method.  相似文献   

6.
In this paper, a new method for solving arbitrary order ordinary differential equations and integro-differential equations of Fredholm and Volterra kind is presented. In the proposed method, these equations with separated boundary conditions are converted to a parametric optimization problem subject to algebraic constraints. Finally, control and state variables will be approximated by a Chebychev series. In this method, a new idea has been used, which offers us the ability of applying the mentioned method for almost all kinds of ordinary differential and integro-differential equations with different types of boundary conditions. The accuracy and efficiency of the proposed numerical technique have been illustrated by solving some test problems.  相似文献   

7.
In this paper, the singular perturbation of boundary value problem to a class of third-order nonlinear vector integro-differential equation is studied. Using the method of differential inequalities, under certain conditions, the existence of perturbed solution is proved, the uniformly valid asymptotic expansion for arbitrary order and the estimation of remainder term are given. Finally, the results are applied to study singularly perturbed boundary value problem to a nonlinear vector fourth-order differential equation. The existence of solution and its asymptotic estimation can be obtained conveniently.  相似文献   

8.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

9.
We present a study of an optimal design problem for a coupled system, governed by a steady-state potential flow equation and a thermal equation taking into account radiative phenomena with multiple reflections. The state equation is a nonlinear integro-differential system. We seek to minimize a cost function, depending on the temperature, with respect to the domain of the equations. First, we consider an optimal design problem in an abstract framework and, with the help of the classical adjoint state method, give an expression of the cost function differential. Then, we apply this result in the two-dimensional case to the nonlinear integro-differential system considered. We prove the differentiability of the cost function, introduce the adjoint state equation, and give an expression of its exact differential. Then, we discretize the equations by a finite-element method and use a gradient-type algorithm to decrease the cost function. We present numerical results as applied to the automotive industry.  相似文献   

10.
解非线性方程的自动调节阻尼法   总被引:1,自引:0,他引:1  
解非线性方程组的一般方法是将其线性化,形成各种形式的迭代程序进行数值近似计算.对于复杂强非线性问题,在迭代过程中往往不易收敛,甚至数值失稳而发散.不能满足工程要求.常规的牛顿法及改进的牛顿法均未彻底解决这一问题,因而使得复杂强非线性问题的数值模拟计算受到了限制.本文提出一种新的方法---自动调节阻尼法,是对带阻尼因子的牛顿法的进一步改进.引进阻尼因子向量,在迭代过程中,通过判断与调整,不断地自动调节阻尼因子向量,引用有效收敛系数与加速系数,改善对赋初值的要求,加速求解的迭代过程,保证了复杂强非线性方程求解的稳定性.采用这一新的方法,已成功地数值模拟了飞机中的一些复杂的传热问题,可进一步推广用于非线性流动、传热、结构动力响应等各种复杂强非线性的工程问题的数值模拟计算.  相似文献   

11.
In this paper, by constructing a closed convex set and using the fixed point theory of completely continuous operators, we investigate the existence of positive solutions for an initial value problem of second-order nonlinear impulsive singular integro-differential equations in a Banach space. The method used in this paper is different from that in the literature.  相似文献   

12.
An approximate solution of the problem of the forced, geometrically nonlinear vibrations of an arbitrary viscoelastic body is found in the form of an expansion in eigenfunctions of the corresponding linear elastic problem. With the aid of the virtual displacement principle the problem is reduced to a system of nonlinear integro-differential equations whose periodic solution is constructed by the small-parameter method.  相似文献   

13.
该文研究向量二阶非线性积分微分方程边值问题的奇摄动, 在适当的条件下利用对角化方法证明了解的存在性, 构造出解的渐近展式并给出余项的一致有效的估计.  相似文献   

14.
研究n-维二阶非线性向量积分微分方程组边值问题的奇摄动,在适当的条件下,利用改进了的对角化方法、逐步逼近法和不动点定理,求得并证明非线性向量积分微分方程组边值问题解的存在性及其渐近表达式,并给出渐近估计.  相似文献   

15.
本文研究一类非线性卷积拟抛物型积分微分方程的初边值问题,是运用Galerkin方法结合能量型先验估计证明了其整体强解的存在性、唯一性和正则性,并在一定条件下讨论了整体解的不存在性.  相似文献   

16.
We study the questions of one-valued solvability of mixed value problem for nonlinear integro-differential equation, consisting a parabolic operator of higher power. By the aid of Fourier series of separation variables the considering problem we can reduce to study the countable system of nonlinear integral equations, one-valued solvability of which will be proved by the method of successive approximations. The convergence of Fourier series will be studied by means of integral identity.  相似文献   

17.
We prove some new maximum principles for ordinary integro-differential equations. This allows us to introduce a new definition of lower and upper solutions which leads to the development of the monotone iterative technique for a periodic boundary value problem related to a nonlinear first-order impulsive integro-differential equation.  相似文献   

18.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

19.
In this article, we implement a relatively new analytical technique, the reproducing kernel Hilbert space method (RKHSM), for solving integro-differential equations of fractional order. The solution obtained by using the method takes the form of a convergent series with easily computable components. Two numerical examples are studied to demonstrate the accuracy of the present method. The present work shows the validity and great potential of the reproducing kernel Hilbert space method for solving linear and nonlinear integro-differential equations of fractional order.  相似文献   

20.
Sinc bases are developed to approximate the solutions of linear and nonlinear Volterra integral and integro-differential equations. Properties of these sinc bases and some operational matrices are first presented. These properties are then used to reduce the integral and integro-differential equations to systems of linear or nonlinear algebraic equations. Numerical examples illustrate the pertinent features of the method and its applicability to a large variety of problems. The examples include convolution type, singular as well as singularly-perturbed problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号