首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The title complexes were obtained in neutral form (n = 0) as rac (1) and meso isomers (2). 2 was crystallized for X-ray diffraction and its temperature-dependent magnetism studied. It contains two antiferromagnetically coupled ruthenium(III) ions, bridged by the quinizarine dianion QL(2-) (quinizarine = 1,4-dihydroxy-9,10-anthraquinone). The potential of both the ligand (QLo --> QL4-) and the metal complex fragment combination [(acac)2RuII]2 --> ([(acac)2RuIV]2)4+ to exist in five different redox states creates a large variety of combinations, which was assessed for the electrochemically reversibly accessible 2+, 1+, 0, 1-, 2- forms using cyclic voltammetry as well as EPR and UV-vis-NIR spectroelectrochemistry. The results for the two isomers are similar: Oxidation to 1+ or 2+ causes the emergence of a near-infrared band (1390 nm), without revealing an EPR response even at 4 K. Reduction to 1- or 2- produces an EPR signal, signifying metal-centered spin but no near-infrared absorption. Tentatively, we assume metal-based oxidation of [(acac)2RuIII(mu-QL2-)RuIII(acac)2] to a mixed-valent intermediate [(acac)2RuIII(mu-QL2-)RuIV(acac)2]+ and ligand-centered reduction to a radical complex [(acac)2RuIII(mu-QL.3-)RuIII(acac)2 (-) with antiferromagnetic three-spin interaction.  相似文献   

2.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

3.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

4.
5.
The dinuclear complex [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)2-3,5]22-) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)2-2,6]-) followed by a reaction with 2,2':6',2' '-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 are compared with those of the closely related [(tpy)RuII(NCN-NCN)RuII(tpy)](PF6)2 (NCN-NCN = [C6H2(CH2NMe2)2-3,5]22-) obtained by two-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4. The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4 and one-electron oxidation of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 yielded the mixed-valence species [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ and [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+, respectively. The comproportionation equilibrium constants Kc (900 and 748 for [(tpy)RuIII(NCN-NCN)RuIII(tpy)]4+ and [(tpy)RuII(PCP-PCP)RuII(tpy)]2+, respectively) determined from cyclic voltammetric data reveal comparable stability of the [RuIII-RuII] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+ and [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups.  相似文献   

6.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

7.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

8.
Complexes of the type [RuIII(L)Cl2(PPh3)2] and [RuII(L)2(PPh3)2] (HL=benzoylacetone or acetylacetone) have been synthesized by the reaction of [RuCl2(PPh3)3] with HL under various experimental conditions. The [RuIII(L)Cl2(PPh3)2] complexes are one-electron paramagnetic species and, in solution, they show intense LMCT transitions in the visible region together with weak ligand-field transitions at lower energies. The [RuII(L)2(PPh3)2] complexes are diamagnetic and their solutions show sharp 1H n.m.r. signals and also show intense MLCT transitions in the visible region. In MeCN solution, the [RuIII(L)Cl2(PPh3)2] complexes show a reversible RuIII-RuII reduction near –0.3V and an irreversible RuIII- RuIV oxidation near 1.2 V versus s.c.e. A reversible RuII-RuIII oxidation is displayed by the [RuII(L)2(PPh3)2] complexes in MeCN solution near 0.3 V versus s.c.e. followed by another reversible RuIII-RuIV oxidation near 1.1 V versus s.c.e. The [RuII(L)2(PPh3)2] complexes have been oxidized to the corresponding [RuIII(L)2(PPh3)2]+ analogues and isolated as ClO4– salts in the solid state. The oxidized complexes are one-electron paramagnetic. They are 1:1 electrolytes in solution and show intense LMCT transitions in the visible region along with weak ligand-field transitions at lower energies.  相似文献   

9.
Yeung WF  Lau TC  Wang XY  Gao S  Szeto L  Wong WT 《Inorganic chemistry》2006,45(17):6756-6760
A series of cyano-bridged Ln(III)Ru(III)2 coordination polymers, Ph4P{Ln(NO3)2[Ru(acac)2(CN)2]2} [Ln = Tb (1), Dy (2), Er (3), Gd (4); Hacac = acetylacetone] have been synthesized by the reaction of Ln(NO3)3 with trans-Ph4P[Ru(acac)2(CN)2] in methanol. X-ray crystallographic determination reveals that these compounds are isostructural and have a wavy (4,4) layer structure with the Ln3+ ions bridged by trans-[Ru(acac)2(CN)2]-. Magnetic studies shows that the magnetic coupling between the Ln(III) and Ru(III) ions through the cyano bridges in 1-4 is negligibly weak.  相似文献   

10.
Structurally characterised 2,5-bis(2-hydroxyphenyl)pyrazine (H2L) can be partially or fully deprotonated to form the complexes [(acac)2Ru(mu-L)Ru(acac)2], [1], acac = acetylacetonato = 2,4-pentanedionato, [(pap)2Ru(mu-L)Ru(pap)2](ClO4)2, [2](ClO4)2, pap = 2-phenylazopyridine, or [(pap)2Ru(HL)](ClO4), [3](ClO4). Several reversible oxidation and reduction processes were observed in each case and were analysed with respect to oxidation state alternatives through EPR and UV-VIS-NIR spectroelectrochemistry. In relation to previously reported compounds with 2,2'-bipyridine as ancillary ligands the complex redox system [1]n is distinguished by a preference for metal-based electron transfer whereas the systems [2]n and [3]n favour an invariant Ru(II) state. Accordingly, the paramagnetic forms of [1]n, n = -, 0, +, exhibit metal-centred spin whereas the odd-electron intermediates [2]+, [2](3+) and [3] show radical-type EPR spectra. A comparison with analogous complexes involving the 3,6-bis(2-oxidophenyl)-1,2,4,5-tetrazine reveals the diminished pi acceptor capability of the pyrazine-containing bridge.  相似文献   

11.
Ruthenium bis(beta-diketonato) complexes have been prepared at both the RuII and RuIII oxidation levels and with protonated and deprotonated pyridine-imidazole ligands. RuII(acac)2(py-imH) (1), [RuIII(acac)2(py-imH)]OTf (2), RuIII(acac)2(py-im) (3), RuII(hfac)2(py-imH) (4), and [DBU-H][RuII(hfac)2(py-im)] (5) have been fully characterized, including X-ray crystal structures (acac = 2,4-pentanedionato, hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). For the acac-imidazole complexes 1 and 2, cyclic voltammetry in MeCN shows the RuIII/II reduction potential (E1/2) to be -0.64 V versus Cp2Fe+/0. E1/2 for the deprotonated imidazolate complex 3 (-1.00 V) is 0.36 V more negative. The RuII bis-hfac analogues 4 and 5 show the same DeltaE1/2 = 0.36 V but are 0.93 V harder to oxidize than the acac derivatives (0.29 and -0.07 V). The difference in acidity between the acac and hfac derivatives is much smaller, with pKa values of 22.1 and 19.3 in MeCN for 1 and 4, respectively. From the E1/2 and pKa values, the bond dissociation free energies (BDFEs) of the N-H bonds in 1 and 4 are calculated to be 62.0 and 79.6 kcal mol(-1) in MeCN - a remarkable difference of 17.6 kcal mol(-1) for such structurally similar compounds. Consistent with these values, there is a facile net hydrogen atom transfer from 1 to TEMPO* (2,2,6,6-tetramethylpiperidine-1-oxyl radical) to give 3 and TEMPO-H. The DeltaG degrees for this reaction is -4.5 kcal mol(-1). 4 is not oxidized by TEMPO* (DeltaG degrees = +13.1 kcal mol(-1)), but in the reverse direction TEMPO-H readily reduces in situ generated RuIII(hfac)2(py-im) (6). A RuII-imidazoline analogue of 1, RuII(acac)2(py-imnH) (7), reacts with 3 equiv of TEMPO* to give the imidazolate 3 and TEMPO-H, with dehydrogenation of the imidazoline ring.  相似文献   

12.
A series of mixed chloro-azole ruthenium complexes with potential antitumor activity, viz., mer-[RuIIICl3(azole)3] (B), trans-[RuIIICl2(azole)4]Cl (C), trans-[RuIICl2(azole)4] (D), and [RuII(azole)6](SO3CF3)2 (E), where azole = 1-butylimidazole (1), imidazole (2), benzimidazole (3), 1-methyl-1,2,4-triazole (4), 4-methylpyrazole (5), 1,2,4-triazole (6), pyrazole (7), and indazole (8), have been prepared as a further development of anticancer drugs with the general formula [RuCl4(azole)2]- (A). These compounds were characterized by elemental analysis, IR spectroscopy, electronic spectra, electrospray mass spectrometry, and X-ray crystallography. The electrochemical behavior has been studied in detail in DMF, DMSO, and aqueous media using cyclic voltammetry, square wave voltammetry, and controlled potential electrolysis. Compounds B and a number of C complexes exhibit one RuIII/RuII reduction, followed, at a sufficiently long time scale, by metal dechlorination on solvolysis. The redox potential values in organic media agree with those predicted by Lever's parametrization method, and the yet unknown EL parameters were estimated for 1 (EL = 0.06 V), 3 (EL = 0.10 V), 4 (EL = 0.17 V), and 5 (EL = 0.18 V). The EL values for the azole ligands 1-8 correlate linearly with their basicity (pK(a) value of the corresponding azolium acid H2L+). In addition, a logarithmic dependence between the homogeneous rate constants for the reductively induced stepwise replacement of chloro ligands by solvent molecules and the RuIII/RuII redox potentials was observed. Lower E(1/2) values (higher net electron donor character of the ligands) result in enhanced kinetic rate constants of solvolysis upon reduction. The effect of the net charge on the RuIII/RuII redox potentials in water is tentatively explained by the application of the Born equation. In addition, the pH-dependent electrochemical behavior of trans-[RuCl2(1,2,4-triazole)4]Cl is discussed.  相似文献   

13.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

14.
The new compounds [(acac)2Ru(mu-boptz)Ru(acac)2] (1), [(bpy)2Ru(mu-boptz)Ru(bpy)2](ClO4)2 (2-(ClO4)2), and [(pap)2Ru(mu-boptz)Ru(pap)2](ClO4)2 (3-(ClO4)2) were obtained from 3,6-bis(2-hydroxyphenyl)-1,2,4,5-tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J = -36.7 cm(-1)) Ru(III) centers. We have investigated the role of both the donor and acceptor functions containing the boptz2- bridging ligand in combination with the electronically different ancillary ligands (donating acac-, moderately pi-accepting bpy, and strongly pi-accepting pap; acac = acetylacetonate, bpy = 2,2'-bipyridine pap = 2-phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal-ligand-metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(mu-boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co-ligand for both Ru(III) and Ru(II) is demonstrated by the adoption of the mixed-valent form in [L2Ru(mu-boptz)RuL2]3+, L = bpy, whereas the corresponding system with pap stabilizes the Ru(II) states to yield a phenoxyl radical ligand and the compound with L = acac- contains two Ru(III) centers connected by a tetrazine radical-anion bridge.  相似文献   

15.
The thioethers 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L3) and 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L4) react with PdCl2(NCMe)2 to give the dinuclear palladium thiophenolate complexes [(L3)Pd2Cl2]+ (2) and [(L4Pd2(mu-Cl)]2+ (3) (HL3= 2,6-bis((2-(dimethylamino)ethylimino)methyl)-4-tert-butylbenzenethiol, HL4 = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-4-tert-butylbenzenethiol). The chloride ligands in could be replaced by neutral (NCMe) and anionic ligands (NCS-, N3-, CN-, OAc-) to give the diamagnetic Pd(II) complexes [(L3)Pd2(NCMe)2]3+ (4), [(L3)Pd2(NCS)2]+ (5), [(L3)Pd2(N3)2]+ (6), [{(L3)Pd2(mu-CN)}2]4+ (7) and [(L3)Pd2(OAc)]2+ (9). The nitrile ligands in and in [(L3)Pd2(NCCH2Cl)2]3+ are readily hydrated to give the corresponding amidato complexes [(L3)Pd2(CH3CONH)]2+ (8) and [(L3)Pd2(CH2ClCONH)]2+ (10). The reaction of [(L3)Pd2(NCMe)2]3+ with NaBPh4 gave the diphenyl complex [(L3)Pd2(Ph)2]+ (11). All complexes were either isolated as perchlorate or tetraphenylborate salts and studied by IR, 1H and 13C NMR spectroscopy. In addition, complexes 2[ClO4], 3[ClO4]2, 5[BPh4], 6[BPh4], 7[ClO4]4, 9[ClO4]2, 10[ClO4]2 and 11[BPh4] have been characterized by X-ray crystallography.  相似文献   

16.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

17.
Protonation of the classical trihydride [(triphos)RhH3] (2) at 210 K in either THF or CH2Cl2 by either HBF4.OMe2 or CF3SO2OH gives the nonclassical eta 2-H2 complex [(triphos)Rh(eta 2-H2)H2]+ (1) [triphos = MeC(CH2PPh2)3]. Complex 1 is thermally unstable and highly fluxional in solution. In THF above 230 K, 1 transforms into the solvento dihydride complex [(triphos)Rh(eta 1-THF-d8)H2]+ (5) that, at room temperature, quickly converts to the stable dimer trans-[[(triphos)RhH]2(mu-H)2]2+ (trans-6). In CH2Cl2, 1 is stable up to 240 K. Above this temperature, the eta 2-H2 complex begins to convert into a mixture of trans- and cis-6, which, in turn, transform into the bridging-chloride dimers trans- and cis-[[(triphos)RhH]2(mu-Cl)2]2+ at room temperature. Complex 1 contains a fast-spinning H2 ligand with a T1min of 38.9 ms in CD2Cl2 (220 K, 400 MHz). An NMR analysis of the bis-deuterated isotopomer [(triphos)RhH2D2]+ (1-d2) did not provide a J(HD) value. At 190 K, the perdeuterated isotopomers [(triphos)RhD3] (2-d3) and 1-d4 show T1min values of 16.5 and 32.6 ms (76.753 MHz), respectively, for the rapidly exchanging deuterides. An analogous 2-fold elongation of T1min is also observed on going from [(triphos)IrD3] to [(triphos)Ir(eta 2-D2)D2]+. A rationale for the elongation of T1min in nonclassical polyhydrides is proposed on the basis of both the results obtained and recent literature reports.  相似文献   

18.
The reaction of hexacyanobutadiene (HCBD) and meso-tetrakis(4-chlorophenyl)porphinatomanganese(II) pyridine [MnIITClPPpy] (1Cl) leads to two phases of [MnIIITClPPpy][HCBD].PhMe (alpha-2Clpy, beta-2Clpy). Similarly, the reaction of HCBD and tetrakis(4-bromophenyl)porphinatomanganese(II) pyridine [MnIITBrPPpy] (1Br) leads to two products [MnIIITBrPPpy] [HCBD] * PhMe (2 Brpy) and [MnIIITBrPP][HCBD]*2 PhMe (3Br). The structure of dark-green alpha-2Clpy consists of one porphyrin unit with MnIII in a square pyramidal coordination environment axially bound to one pyridine. The cation forms [MnIIITCIPPpy](2)2+ as cofacial dimerized porphyrins. Each [HCBD]*- is nonplanar with a torsion angle of 170.8(4) degrees about the center C-C bound, and forms [HCBD](2)2- dimers in the solid state with sub-van der Waals contacts of 3.325 and 3.340 angstroms. The magnetic data above 10 K obey the Curie-Weiss expression with a theta of -2.5 K, and mueff (300 K) = 4.91 muB as expected for S=2MnIII and S = 0 [HCBD](2)2-. The magnetic data for alpha-2Clpy can be fit with an zero-field-splitting D of -1.45 K. beta-2 Clpy consists of one porphyrin unit with MnIII in a distorted octahedral coordination environment axially bound to py and to a monodentate [HCBD]*- bound via an exo-nitrile. [HCBD]*- is nonplanar with a torsion angle of 169.7(5) degrees about the center C-C bound. The ueff (350 K) is 5.09 muB; however, the magnetic data do not obey the Curie-Weiss expression above 70 K. The low temperature data may be fit with a theta of -5.4 K. The data was modeled to an isolated S = 2 and S = 1/2 dinuclear spin system with J/kappaB = - 90 K. Decomposition of [HCBD]*- to [C4(CN)5O]- was evidenced by the determination of the structure of [MnIIITCIPP][C4(CN)5O] 2PhMe (3ClO). Crystals of 3 Cl-O were prepared by reaction of HCBD and 1Cl in the presence of a drop of water. The molecular structure consists of [HCBD]*-trans-mu-N-2,3-bound to [MnIIITBrPP]+ forming a 1-D coordination polymer of alternating [MnIIITBrPP]+ and [HCBD]*-. The intrachain Mn***Mn distance was 10.675(3) angstroms, with important interchain Mn***Mn distances of 10.832, 11.016, and 14.696 A. The magnetic data were fit to a Curie-Weiss law (10 < T< 290 K) with a theta of -3.5 K, and D = 0.3 K with mueff = 4.97 muB at 300 K.  相似文献   

19.
Ruthenium(II) heptacoordinate complexes containing the pentadentate SNNNS chelating ligand 2,6–diacetylpyridine bis(4–(p-tolyl)thiosemicarbazone) (L1H2) have been prepared. The compounds were of the type Ru(L1H2)X2 [X=Cl (1);Br (2); SCN (3)],[Ru(L1H2)- (Y)Cl]Cl [Y=imidazole (4); pyridine-N-oxide (5)] and [Ru(L1H2)(PPh3)X]Y, [X=Cl (6), (7);Br (8); Y=ClO4/ PF6]. The complexes were characterised by i.r., u.v.–vis. and n.m.r. spectroscopy and their electrochemical behaviour was examined by cyclic voltammetry. They exhibit a reversible to quasi-reversible RuII/RuIII couple in MeCN solution at a glassy carbon working electrode using an Ag/AgCl electrode as the reference. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Reaction between the Os(VI)-nitrido complex, trans-[OsVI(tpy)(Cl)2(N)]PF6 (tpy = 2,2':6',2' '-terpyridine), and ammonia (NH3) under N2 in dry CH3CN gives the mu-1,3-azido bridged [OsII-N3-OsII]- dimer, trans,trans-NH4[(tpy)(Cl)2OsII(N3)OsII(Cl)2(tpy)]. It undergoes air oxidation to give the [OsIII-N3-OsIII]+ analogue, trans,trans-[(tpy)(Cl)2OsIII(N3)OsIII(Cl)2(tpy)]PF6 ([OsIII-N3-OsIII]PF6), which has been isolated and characterized. The structural formulation as a mu-1,3-N3 bridged complex has been established by infrared and 15N NMR measurements on the 15N-labeled forms, [OsIII-14N=15N=14N-OsIII]+, [OsIII-15N=14N=15N-OsIII]+, and [OsIII-15N=15N=15N-OsIII]+. Cyclic voltammetric measurements in 0.2 M Bu4NPF6/CH3CN reveal the existence of five chemically reversible waves from 1.40 to -0.12 V for couples ranging from OsV-OsIV/OsIV-OsIV to OsIII-OsII/OsII-OsII. DeltaE1/2 values for couples adjacent to the three mixed-valence forms are 0.19 V for OsIII-OsII, 0.52 V for OsIV-OsIII, and >0.71 V for OsV-OsIV. In CH3CN at 60 degrees C, [OsIII-N3-OsIII]+ undergoes a [2 + 3] cycloaddition with CH3CN at the mu-N3- bridge followed by a solvolysis to give trans-[OsIII(tpy)(Cl)2(5-MeCN4)] and trans-[OsIII(tpy)(Cl)2(NCCH3)]PF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号