共查询到20条相似文献,搜索用时 15 毫秒
1.
S. V. Peigin 《Fluid Dynamics》1985,20(6):856-864
Numerical and approximate analytic methods are used to investigate the three-dimensional nonself-similar swirling flow of a uniform gas on an axisymmetric permeable surface. For large values of the injection parameter (in the general case the injection velocity vector forms a nonzero angle with the vector of the outward normal to the flow surface) asymptotic expressions are obtained for the velocity and temperature profiles across the injection layer, the components of the friction stress and the heat flux at the surface. Certain results of a numerical solution of the problem obtained on a broad interval of variation of the injection parameter are presented. By comparing the numerical and asymptotic solutions the accuracy and region of applicability of the latter are estimated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 28–37, November–December, 1985.In conclusion, the author wishes to thank É. A. Gershbein (deceased) for useful discussion of his results. 相似文献
2.
V. V. Skripachev 《Journal of Applied Mechanics and Technical Physics》1969,10(6):886-890
In connection with the successful experiments of Kramer [l, 2] on models sheathed by flexible coverings, attempts have been made to explain theoretically the effect of boundary deformation on the position of the point of stability loss in the boundary layer. Korotkin [3] examined the stability of a plane laminar boundary layer on an elastic surface under the assumption of a linear connection between the pressure perturbation and the normal deformation of the surface. Benjamin [4] and Landahl [5] investigated the stability of the laminar boundary layer on a membrane type surface under the assumption that the physical characteristics of the surface depend on the perturbing flow wavelength. In the following we examine stability of Blasius flow on a membrane type surface whose physical characteristics are constant along the length.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, vol. 10, no. 6, pp. 52–56, November–December, 1969. 相似文献
3.
V. M. Zubarev 《Fluid Dynamics》1984,19(3):490-494
A numerical investigation has been made of the laminar boundary layer that arises on the moving surface of a cylindrical body (Rankine oval with relative elongation 4) that moves with constant velocity in an incompressible fluid. The distributions of the frictional stress on the surface of the cylinder for different velocities of the wall motion are found. Numerical integration was employed to determine the work needed to overcome the frictional drag, the pressure, and also the work expended on the motion of the moving surface of the body in the case of constant velocity. In the presence of a separation region the drag forces are calculated under the assumption that in the separation region the pressure and the frictional stress on the wall are constant and equal to the corresponding values at the singular point of the solution of the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 3, pp. 171–174, May–June, 1984.I thank G. G. Chernyi for constant interest in the work and discussing the results. 相似文献
4.
5.
It is known that the longitudinal pressure gradient can exert a strong influence on the friction law and the characteristics of a dynamic turbulent boundary layer. The thermal and diffusion boundary layers are more conservative to the effect of the pressure gradient, and, hence, methods of analyzing them are based, in the majority of cases, on the hypothesis of conservativity of the heat- and mass-transfer laws to the longitudinal pressure gradient [1]. This hypothesis is verified by experimental results [2, 3] on heat transfer on an impermeable surface in a turbulent stream with positive pressure gradient under almost isothermal conditions. However, such investigations under nonisothermal conditions are practically nonexistent. An approximate theoretical analysis of the heat transfer in a turbulent boundary layer of a nonisothermal stream with a positive pressure gradient is given in this paper. Experimental results are presented. The experimental investigation was conducted in a burned-out graphite diffuser both with and without injection of an inert gas through the wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 43–49, July–August, 1976. 相似文献
6.
7.
The state of a gas near a permeable nonisothermal body with ultrathin pores, that is, pores in which the motion of molecules is not accompanied by intermolecular collisions, is studied. A boundary layer of a new type, namely, the quasiequilibrium Knudsen boundary layer on the porous body surface, is investigated. It is formed on condition that within the body there is a heat flux, even when the body is in an equilibrium gas. The statistical methods for solving the Boltzmann equation are used to determine the temperature and pressure jumps across the Knudsen layer near thin perforated and porous membranes. 相似文献
8.
J. C. Bhatia 《Flow, Turbulence and Combustion》1975,30(6):469-476
Using mixed momentum and energy integral equations, a simple quadrature method is developed to compute incompressible laminar boundary layer on a yawed infinite cylinder. As an illustration, the results — including various boundary layer thicknesses, form parameters and potential and surface streamlines — are obtained for a circular cylinder and compared with a known solution. 相似文献
9.
10.
Effect of surface steps on boundary layer transition 总被引:1,自引:0,他引:1
An experimental study has been carried out to examine the effect of a sharp-edged step on boundary layer transition. The transition position and disturbance spectra in the boundary layer for different step heights and free-stream velocities were measured by hot-wire anemometry. A correlation between the transition Reynolds number and the relative step height has been established for both backward-facing and forward-facing steps. The transition position is associated with the “N-factor” that defines the integrated growth of instability waves at transition. The boundary layer over a step has an earlier transition position than that on a smooth plate, since the instability waves amplify more rapidly than those on a smooth surface. The transition N-factor for the flow containing a step, calculated using the amplification rates on a smooth plate, will, therefore, be smaller than that on surfaces without a step. The observed reduction of the N-factor occurring with a step has been shown to correlate with the height of the step, thus, providing an empirical tool that can be used to estimate the transition position when steps occur. An appropriate value of N can be determined from knowledge of the step height. 相似文献
11.
The spatial non-self-similar boundary layer in a compressible gas in a swirling flow is studied. Boundary-layer equations are written in variables ensuring constancy of the coefficients of first derivatives and are solved by the finite-difference method. Boundary-layer peculiarities in the presence of a return circulation region in the channel are clarified.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 43–49, January–February, 1976. 相似文献
12.
G. N. Stepanov 《Fluid Dynamics》1980,15(4):594-599
A study is made of the nonstationary laminar boundary layer on a sharp wedge over which a compressible perfect gas flows; the wedge executes slow harmonic oscillations about its front point. It is assumed that the perturbations due to the oscillations are small, and the problem is solved in the linear approximation. It is also assumed that the thickness of the boundary layer is small compared with the thickness of the complete perturbed region. Then in a first approximation the influence of the boundary layer on the exterior inviscid flow can be ignored, and the parameters on the outer boundary of the boundary layer can be taken equal to their values on the body for the case of inviscid flow over the wedge. They are determined from the solution to the inviscid problem that is exact in the framework of the linear formulation. The wall is assumed to be isothermal. The dependence of the viscosity on the temperature is linear. Under these assumptions, the problem of calculating the nonstationary perturbations in the boundary layer on the wedge is a self-similar problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 146–151, July–August, 1980. 相似文献
13.
14.
Planar and axisymmetric flows of a multicomponent compressible gas in a laminar boundary layer with nonzero tangential component of the velocity on a permeable surface are considered. The asymptotic solutions of the boundary-layer equations obtained earlier [1–4] for large values of the blowing and suction parameters are generalized to the case when the velocity vector of the blown or extracted gas makes an acute angle with the surface of the body, this angle depending on the longitudinal coordinate. The region of applicability of the asymptotic formulas is estimated on the basis of the results of numerical solution of the boundary-layer equations. The results are given of some calculations of the boundary layer on a partly moving surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 28–36, September–October, 1979.We thank G. A. Tirskii and G. G. Chernyi for a helpful discussion of the results. 相似文献
15.
A new series of experiments has investigated the influence of hoarfrost on the surface of a model on the position of the boundary layer transition for the same water vapor concentration in the working part of the wind tunnel and the same Mach number and unit Reynolds number but different amounts (masses) of hoarfrost on the investigated section of the model.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 170–172, March–April, 1984. 相似文献
16.
17.
18.
19.
20.
V. I. Nosik 《Fluid Dynamics》1996,31(2):325-333
Nonequilibrium thermal dissociation in a nonisothermal boundary layer in a mixture of Morse anharmonic oscillators — molecules of a diatomic gas and its atoms — is considered within the framework of the ladder mechanism. The local nonlinear nonequilibrium corrections to the two-temperature macroscopic dissociation rate, which depend, in particular, on the translational and vibrational temperature gradients and the degree of dissociation, are determined.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 191–201, March–April, 1996. 相似文献