首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injectable hydrogel is a kind of in situ gelling system but has its specificity on the process procedure, which requires a better control of gelation kinetics. Hydrogels with injectability under mild condition are preferred in the field of biomedicine, especially for drug delivery and tissue engineering, because of the favorable carrier property in three-dimension, biocompatibility, low invasive and adaptable shape for administration. Despite the advantages, the development of injectable hydrogels may also face some challenges to meet the various clinical requirements. In this review, we provide a brief summary on the recent progresses on the design, synthesis and evaluation of injectable hydrogels towards biomedical applications.  相似文献   

2.
Hydrogels are cross‐linked three‐dimensional polymeric networks that play a vital role in solving the pharmacological and clinical limitations of the existing systems due to their unique physical properties such as affinity for biological fluids, tunable porous nature, high water content, ease of preparation, flexibility, and biocompatibility. Hydrogel also mimics the living natural tissue, which opens several opportunities for its use in biomedical areas. Injectable hydrogel allows temporal control and exceptional spatial arrangements and can offset hitches with established hydrogel‐based drug delivery systems. Here, we review the recent development of injectable hydrogels and their significance in the delivery of therapeutics such as cells, genes, and drug molecules and how these innovatory systems can complement the current delivery systems.  相似文献   

3.
Current sustained delivery strategies of protein therapeutics are limited by the fragility of the protein, resulting in minimal quantities of bioactive protein delivered. In order to achieve prolonged release of bioactive protein, an affinity-based approach was designed which exploits the specific binding of the Src homology 3 (SH3) domain with short proline-rich peptides. Specifically, methyl cellulose was modified with SH3-binding peptides (MC-peptide) with either a weak affinity or strong affinity for SH3. The release profile of SH3-rhFGF2 fusion protein from hyaluronan MC-SH3 peptide (HAMC-peptide) hydrogels was investigated and compared to unmodified controls. SH3-rhFGF2 release from HAMC-peptide was extended to 10 days using peptides with different binding affinities compared to the 48 h release from unmodified HAMC. This system is capable of delivering additional proteins with tunable rates of release, while maintaining bioactivity, and thus is broadly applicable.  相似文献   

4.
Nanostructured hydrogels based on "smart" polymer conjugates of poloxamers and protein molecules were developed in order to form stimulus-responsive materials with bioactive properties for 3-D cell culture. Functionalized Pluronic F127 was covalently attached to a fibrinopeptide backbone and cross-linked into a structurally versatile and mechanically stable polymer network endowed with bioactivity and temperature-responsive structural features. Small angle X-ray scattering and transmission electron microscopy combined with rheology were used to characterize the structural and mechanical features of this biosynthetic conjugate, both in solution and in hydrogel form. The temperature at which the chemical cross-linking of F127-fibrinopeptide conjugates was initiated had a profound influence on the mechanical properties of the thermo-responsive hydrogel. The analysis of the scattering data revealed modification in the structure of the protein backbone resulting from increases in ambient temperature, whereas the structure of the polymer was not affected by ambient temperature. The hydrogel cross-linking temperature also had a major influence on the modulus of the hydrogel, which was rationally correlated to the molecular structure of the polymer network. The hydrogel structure exhibited a small mesh size when cross-linked at low temperatures and a larger mesh size when cross-linked at higher temperatures. The mesh size was nicely correlated to the mechanical properties of the hydrogels at the respective cross-linking temperatures. The schematic charts that model this material's behavior help to illustrate the relationship that exists between the molecular structure, the cross-linking temperature, and the temperature-responsive features for this class of protein-polymer conjugates. The precise control over structural and mechanical properties that can be achieved with this bioactive hydrogel material is essential in designing a tissue-engineering scaffold for clinical applications.  相似文献   

5.
The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both "see and treat" patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status.  相似文献   

6.
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).  相似文献   

7.
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The state of the art in polymeric materials for tissue engineering as well as the needs and concerns for future medical applications are outlined and discussed and brought into relation to recent developments in polymer chemistry. Particularly, the recent developments in micro‐ and nano‐structured polymeric monoliths designed for these purposes will be discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2219–2227, 2009  相似文献   

9.
For the first time the combination of self-immolative spacers and supramolecular hydrogels has been tested in enzyme triggered drug release. Low-molecular weight drug-gelator conjugates have been prepared, which contain a gel forming lysine moiety linked to model drugs (benzylamine and phenethylamine) through a self-immolating spacer (p-aminobenzyloxycarbonyl). In the presence of trypsin the amide linkage between the gelator moiety and the spacer is hydrolyzed leading to the release of the model drug. This approach provides with distinct advantages, such as sustained release or versatility associated to the use of supramolecular hydrogels and self-immolative spacers, respectively.  相似文献   

10.
Biodegradable hydrogels composed of oligopeptide-terminated poly(ethylene glycol) (PEG) and dextran with interpenetrating polymer network (IPN) structure were proposed as a novel substrate for multistimuli-responsive drug delivery. IPN-structured hydrogels were synthesized by sequential crosslinking reactions of N-methacryloyl-glycilglycilglycil-terminated PEG and dextran. In vitro degradation of the IPN-structured hydrogels was examined using papain and dextranase as model enzymes for hydrolyzing the oligopeptide and the dextran. Specific degradation in the presence of papain and dextranase was observed in the IPN-structured hydrogel with a particular composition of PEG and dextran, whereas this hydrogel was not degraded by one of the two enzymes.  相似文献   

11.
The objective of this study was to characterize and evaluate the physicochemical properties and drug release profiles of hydrogels composed of silk protein (SP) polymers. SPs with a low MW (SPL, ca. 18 kDa) and a high MW (SPH, ca. 76 kDa) were used for preparing hydrogels. Both the random coil form and beta-sheet conformation simultaneously existed in the hydrogels according to Fourier-transformed IR determination. Morphologically, the hydrogels showed a sponge-like cross-linked structure produced by physical entanglement as well as chemical hydrogen and covalent bindings. The in vitro buprenorphine delivery from SPH hydrogels showed a slow-release effect, and a zero-order rate was obtained for all preparations. Drug release could be controlled by varying the SPH concentrations or incorporation of SPL into the systems. SP hydrogels showed a stronger barrier property for hydrophilic solutes than for hydrophobic solutes. The incorporation of SPH into Pluronic F-127 (PF-127) hydrogels changed the gel structure from amorphous micelles to a regularly interconnected texture with pores. Furthermore, SPH as an adjuvant polymer in PF-127 and chitosan hydrogels lowered and controlled the amount of drug released from those systems.  相似文献   

12.
A series of oxidized hyaluronic acid (oxi‐HA)/3,3′‐dithiobis (propionohydrazide) (DTP) redox responsive hydrogels by Schiff base reaction under physiological conditions were designed and prepared. The influence of the concentration of oxi‐HA and DTP on rheological properties, equilibrium swelling ratio, and degradation rate were investigated. All oxi‐HA/DTP hydrogels exhibited good rheological properties, high equilibrium swelling ratio, low degradation rate, and sustainable drug release properties, and the comprehensive performance of oxi‐HA5/DTP6 hydrogel was better than that of others. The redox responsiveness was evaluated by means of degradation and in vitro bovine serum albumin release behavior investigation with the stimulus of different concentration of dithiothreitol as reducing agent. The intelligent hydrogels could be potentially applied in the fields of drug delivery system, tissue engineering, or cell scaffold materials. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A novel process was developed to fabricate biodegradable polymer scaffolds for tissue engineering applications, without using organic solvents. Solvent residues in scaffolds fabricated by processes involving organic solvents may damage cells transplanted onto the scaffolds or tissue near the transplantation site. Poly(L-lactic acid) (PLLA) powder and NaCl particles in a mold were compressed and subsequently heated at 180 degrees C (near the PLLA melting temperature) for 3 min. The heat treatment caused the polymer particles to fuse and form a continuous matrix containing entrapped NaCl particles. After dissolving the NaCl salts, which served as a porogen, porous biodegradable PLLA scaffolds were formed. The scaffold porosity and pore size were controlled by adjusting the NaCl/PLLA weight ratio and the NaCl particle size. The characteristics of the scaffolds were compared to those of scaffolds fabricated using a conventional solvent casting/particulate leaching (SC/PL) process, in terms of pore structure, pore-size distribution, and mechanical properties. A scanning electron microscopic examination showed highly interconnected and open pore structures in the scaffolds fabricated using the thermal process, whereas the SC/PL process yielded scaffolds with less interconnected and closed pore structures. Mercury intrusion porosimetry revealed that the thermally produced scaffolds had a much more uniform distribution of pore sizes than the SC/PL process. The utility of the thermally produced scaffolds was demonstrated by engineering cartilaginous tissues in vivo. In summary, the thermal process developed in this study yields tissue-engineering scaffolds with more favorable characteristics, with respect to, freedom from organic solvents, pore structure, and size distribution than the SC/PL process. Moreover, the thermal process could also be used to fabricate scaffolds from polymers that are insoluble in organic solvents, such as poly(glycolic acid). Cartilage tissue regenerated from thermally produced PLLA scaffold.  相似文献   

14.
The synthesis of targetable conjugates of doxorubicin bound to N-(2-hydroxypropyl)methacrylamide copolymers was investigated. Anti-CD3 antibody against TCR/CD3 complex was used to target the conjugates to T-cells. The effect of structure of the oligopeptide spacer between the drug and polymer as well as of the polymer modification with the antibody on the rate of drug release from the polymeric carrier system incubated in vitro with cathepsin B or with a mixture of intracellular enzymes (tritosomes) is discussed. The results of in vitro drug-release experiments are correlated with the evaluation of T-cell cytotoxicity of targeted and nontargeted polymer-bound doxorubicin conjugates measured in vitro as the inhibition of Con-A stimulated growth of human peripheral blood lymphocytes (3H-thymidine incorporation method).  相似文献   

15.
16.
Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.  相似文献   

17.
Supramolecular hydrogels self-assembled by alpha-cyclodextrin and methoxypolyethylene glycol-poly(caprolactone)-(dodecanedioic acid)-poly(caprolactone)-methoxypolyethylene glycol (MPEG-PCL-MPEG) triblock polymers were prepared and characterized in vitro and in vivo. The sustained release of dextran-fluorescein isothiocyanate (FITC) from the hydrogels lasted for more than 1 month, which indicated that the hydrogels were promising for controlled drug delivery. ECV304 cells and marrow mesenchymal stem cells (MSC) were encapsulated and cultured in the hydrogels, during which the morphologies of the cells could be kept. The in vitro cell viability studies and the in vivo histological studies demonstrated that the hydrogels were non-cytotoxic and biocompatible, which indicated that the hydrogels prepared were promising candidates as injectable scaffolds for tissue engineering applications.  相似文献   

18.
A novel design of a biodegradable carrier for drug delivery was established by constructing a supramolecular assembly of drugs and polymer backbones without any covalent bonds. A biodegradable polyrotaxane was synthesized in which α-cyclodextrins (α-CDs) as drug carriers were threaded onto poly(ethylene glycol) chains which then were capped at each chain end by L -phenylalanine via peptide linkages. The release of α-CDs was observed only when the terminal peptide linkages were degraded.  相似文献   

19.
庞勇  谭鸿 《高分子科学》2013,31(10):1451-1462
To better investigate the degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering, a series of new waterborne biodegradable polyurethanes (PEGPUs) with low degree of crosslinking was synthesized using IPDI, BDO and L-lysine as hard segments, PCL and PEG as soft segment. The bulk structures and properties of the prepared polyurethanes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), tensile mechanical tests and water contact angle (WCA) measurements. The degree of microphase separation was slightly improved because of the lowered crosslinking degree of these PEGPUs in comparison with the high cross-linking degree samples, leading to good mechanical properties, as indicated by DSC and stress-strain data. Moreover, biodegradability of the polyurethanes was evaluated in phosphate buffer solutions (PBS) under different pH values and enzymatic solution at pH 7.4 through weight loss monitoring. The results suggested that the degradation of these PEGPUs was closely related to their bulk and surface properties. And the degradation products didn’t show apparent inhibition effect against fibroblasts in vitro. These studies demonstrated that the waterborne biodegradable polyurethanes could find potential use in soft tissue engineering and tissue regeneration.  相似文献   

20.
Three methods of manipulating the kinetics of hydrolysis of polymer conjugates were evaluated. It was demonstrated that either first-order, zero-order or S-shaped kinetic profiles could be achieved by systematic changes in the chemical composition of several series of model side-chain substituted polyacrylates. The changes in kinetics were shown to arise from an increase in the rate constant during solvolysis, resulting from predictable changes in either the water content, secondary structure, or LCST of the polymer conjugate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号