首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The colored Jones function of a knot is a sequence of Laurent polynomials that encodes the Jones polynomial of a knot and its parallels. It has been understood in terms of representations of quantum groups and Witten gave an intrinsic quantum field theory interpretation of the colored Jones function as the expectation value of Wilson loops of a 3-dimensional gauge theory, the Chern–Simons theory. We present the colored Jones function as an evaluation of the inverse of a non-commutative fermionic partition function. This result is in the form familiar in quantum field theory, namely the inverse of a generalized determinant. Our formula also reveals a direct relation between the Alexander polynomial and the colored Jones function of a knot and immediately implies the extensively studied Melvin–Morton–Rozansky conjecture, first proved by Bar–Natan and the first author about 10 years ago. Our results complement recent work of Huynh and Le, who also give a non-commutative formulae for the colored Jones function of a knot, starting from a non-commutative formula for the R matrix of the quantum group ; see Huynh and Le (in math.GT/0503296).  相似文献   

2.
The hexatangle     
We are interested in knowing what type of manifolds are obtained by doing Dehn surgery on closed pure 3-braids in S3. In particular, we want to determine when we get S3 by surgery on such a link. We consider links which are small closed pure 3-braids; these are the closure of 3-braids of the form , where σ1, σ2 are the generators of the 3-braid group and e1, f1, e are integers. We study Dehn surgeries on these links, and determine exactly which ones admit an integral surgery producing the 3-sphere. This is equivalent to determining the surgeries of some type on a certain six component link L that produce S3. The link L is strongly invertible and its exterior double branch covers a certain configuration of arcs and spheres, which we call the hexatangle. Our problem is equivalent to determine which fillings of the spheres by integral tangles produce the trivial knot, which is what we explicitly solve. This hexatangle is a generalization of the pentangle, which is studied in [C.McA. Gordon, J. Luecke, Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004) 417-485].  相似文献   

3.
4.
5.
For the distance of (1,1)-splittings of a knot in a closed orientable 3-manifold, it is an important problem whether a (1,1)-knot can admit (1,1)-splittings of different distances. In this paper, we give one-parameter families of hyperbolic (1,1)-knots such that each (1,1)-knot admits a Dehn surgery yielding the 3-sphere. It is remarkable that such knots are the first concrete examples each of whose (1,1)-splittings is of distance three.  相似文献   

6.
Let M be a compact, connected, orientable, irreducible 3-manifold and T0 an incompressible torus boundary component of M such that the pair (M,T0) is not cabled. By a result of C. Gordon, if (S,∂S),(T,∂T)⊂(M,T0) are incompressible punctured tori with boundary slopes at distance Δ=Δ(∂S,∂T), then Δ?8, and the cases where Δ=6,7,8 are very few and classified. We give a simplified proof of this result (or rather, of its reduction process), using an improved estimate for the maximum possible number of mutually parallel negative edges in the graphs of intersection of S and T. We also extend Gordon's result by allowing either S or T to be an essential Klein bottle.  相似文献   

7.
The Kontsevich integral of a knot is a graph-valued invariant which (when graded by the Vassiliev degree of graphs) is characterized by a universal property; namely it is a universal Vassiliev invariant of knots. We introduce a second grading of the Kontsevich integral, the Euler degree, and a geometric null-move on the set of knots. We explain the relation of the null-move to S-equivalence, and the relation to the Euler grading of the Kontsevich integral. The null-move leads in a natural way to the introduction of trivalent graphs with beads, and to a conjecture on a rational version of the Kontsevich integral, formulated by the second author and proven in Geom. Top 8 (2004) 115 (see also Kricker, preprint 2000, math/GT.0005284).  相似文献   

8.
We say a knot k in the 3-sphere S3 has PropertyIE if the infinite cyclic cover of the knot exterior embeds into S3. Clearly all fibred knots have Property IE.There are infinitely many non-fibred knots with Property IE and infinitely many non-fibred knots without property IE. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property IE, then its Alexander polynomial Δk(t) must be either 1 or 2t2−5t+2, and we give two infinite families of non-fibred genus 1 knots with Property IE and having Δk(t)=1 and 2t2−5t+2 respectively.Hence among genus 1 non-fibred knots, no alternating knot has Property IE, and there is only one knot with Property IE up to ten crossings.We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.  相似文献   

9.
We study the topological structure of all 3-manifolds obtained by surgery along principal fibers of a closed orientable -manifold. As a consequence, we give alternative proofs of some classical results due to W. Heil and L. Moser. Moreover, we completely specify the Seifert invariants for the considered manifolds. Finally we classify the manifolds obtained by surgery along certain Seifert links and determine geometric presentations of their fundamental groups.Work performed under the auspices of C.N.R. (National Research Council) of Italy and partially supported by Ministero della Ricerca Scientifica e Tecnologica within the projects Geometria Reale e Complessa and Topologia.  相似文献   

10.
In the present paper we give a formula for colored Turaev-Viro invariants of twist knots using special polyhedra derived from (1,1)-decomposition of the knots.  相似文献   

11.
In this paper, we prove that the Jones polynomial of a link diagram obtained through repeated tangle replacement operations can be computed by a sequence of suitable variable substitutions in simpler polynomials. For the case that all the tangles involved in the construction of the link diagram have at most k crossings (where k is a constant independent of the total number n of crossings in the link diagram), we show that the computation time needed to calculate the Jones polynomial of the link diagram is bounded above by O(nk). In particular, we show that the Jones polynomial of any Conway algebraic link diagram with n crossings can be computed in O(n2) time. A consequence of this result is that the Jones polynomial of any Montesinos link and two bridge knot or link of n crossings can be computed in O(n2) time.  相似文献   

12.
Given a knot in an integer homology sphere, one can construct a family of closed 3-manifolds (parameterized by the positive integers), namely the cyclic branched coverings of the knot. In this paper, we give a formula for the Casson-Walker invariants of these 3-manifolds in terms of residues of a rational function (which measures the 2-loop part of the Kontsevich integral of a knot) and the signature function of the knot. Our main result actually computes the LMO invariant of cyclic branched covers in terms of a rational invariant of the knot and its signature function.  相似文献   

13.
This paper explicitly provides two exhaustive and infinite families of pairs (M,k), where M is a lens space and k is a non-hyperbolic knot in M, which produces a manifold homeomorphic to M, by a non-trivial Dehn surgery. Then, we observe the uniqueness of such knot in such lens space, the uniqueness of the slope, and that there is no preserving homeomorphism between the initial and the final M's. We obtain further that Seifert fibered knots, except for the axes, and satellite knots are determined by their complements in lens spaces. An easy application shows that non-hyperbolic knots are determined by their complement in atoroidal and irreducible Seifert fibered 3-manifolds.  相似文献   

14.
In [M.R. Casali, Computing Matveev's complexity of non-orientable 3-manifolds via crystallization theory, Topology Appl. 144(1-3) (2004) 201-209], a graph-theoretical approach to Matveev's complexity computation is introduced, yielding the complete classification of closed non-orientable 3-manifolds up to complexity six. The present paper follows the same point-of view, making use of crystallization theory and related results (see [M. Ferri, Crystallisations of 2-fold branched coverings of S3, Proc. Amer. Math. Soc. 73 (1979) 271-276; M.R. Casali, Coloured knots and coloured graphs representing 3-fold simple coverings of S3, Discrete Math. 137 (1995) 87-98; M.R. Casali, From framed links to crystallizations of bounded 4-manifolds, J. Knot Theory Ramifications 9(4) (2000) 443-458]) in order to significantly improve existing estimations for complexity of both 2-fold and three-fold simple branched coverings (see [O.M. Davydov, The complexity of 2-fold branched coverings of a 3-sphere, Acta Appl. Math. 75 (2003) 51-54] and [O.M. Davydov, Estimating complexity of 3-manifolds as of branched coverings, talk-abstract, Second Russian-German Geometry Meeting dedicated to 90-anniversary of A.D.Alexandrov, Saint-Petersburg, Russia, June 2002]) and 3-manifolds seen as Dehn surgery (see [G. Amendola, An algorithm producing a standard spine of a 3-manifold presented by surgery along a link, Rend. Circ. Mat. Palermo 51 (2002) 179-198]).  相似文献   

15.
Michael Eisermann 《Topology》2004,43(5):1211-1229
This article examines the relationship between 3-manifold topology and knot invariants of finite type. We prove that in every Whitehead manifold there exist knots that cannot be distinguished by Vassiliev invariants. If, on the other hand, Vassiliev invariants distinguish knots in each homotopy sphere, then the Poincaré conjecture is true (i.e. every homotopy 3-sphere is homeomorphic to the standard 3-sphere).  相似文献   

16.
17.
We compute the p-primary components of the linking pairings of orientable 3-manifolds admitting a fixed-point free S1-action. Any linking pairing on a finite abelian group of odd order is realized by such a manifold. We find necessary and sufficient conditions for a pairing on an abelian 2-group to be the 2-primary component of such a linking pairing, and give simple examples which are not realizable by any Seifert fibred 3-manifold.  相似文献   

18.
In this paper,we discuss the properties of the colored Jones function of knots.Particularly,we calculate the colored Jones function of some knots(31,41,51,52).Furthermore,one can compute the Kashaev’s invariants and study some properties of the Kashaev’s conjecture.  相似文献   

19.
20.
Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, Φ (c), such that if K is a nontrivial knot in the three-sphere with a diagram with c crossings then the complement of K has a finite-sheeted, noncyclic cover with at most Φ (c) sheets.The author is supported by an NSF Postdoctoral Fellowship at Cornell University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号