共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
根据Lagrange颗粒运动微分方程及不可压缩湍流边界层中流体的壁面速度分布规律,数值求解了颗粒在湍流边界层中的运动,考虑了Saffman升为对颗粒运动的影响,壁面对运动阻力的影响,给出了固体颗粒沉积边壁,在边界层外缘上所需的最小速度和最小入射角,计算结果还表明边界层对固体颗粒撞击边壁的速度和入射角有较大影响,从数值结果可可以发现一个重要现象。 相似文献
3.
雷诺切应力是壁湍流高摩擦阻力的重要来源, 有理论认为可以通过壁面生成负雷诺应力(数值上为正)的方式来削弱湍流流场中雷诺应力的分布, 以此获得流动减阻. 而通过对雷诺平均运动方程的法向二次积分, 可以发现壁面生成正雷诺应力(数值上为负)对壁面摩擦阻力系数才有负贡献. 文中在湍流边界层流动的控制区域下边界设置一系列倾斜狭缝, 利用该装置通过周期性吹吸的方法产生壁面生成正(负)雷诺应力, 并采用直接数值模拟方法考察和验证上文提到的减阻理论. 文中采用的湍流边界层流动模型, 其流动雷诺数(基于外流速度及动量损失厚度)从300 发展到860. 文中通过多组数值模拟算例, 考察了射流强度和频率对壁面摩擦阻力系数的影响, 并对比了壁面生成正或负雷诺应力对流动的影响. 研究表明, 壁面生成正雷诺应力控制的减阻率能达到3.26, 而壁面生成负雷诺应力控制的减阻效果较壁面生成正雷诺应力控制的要差; 壁面生成的正雷诺应力对壁面摩擦阻力有负贡献, 而壁面生成的负雷诺应力对壁面摩擦阻力有正贡献; 通过考察控制的收支比, 发现控制方案不能获得能量净收益. 相似文献
4.
在研究紊流边界层的过程中,本文考虑了分子粘性对紊流产生的作用、雷诺数以及壁面附近脉动动能的耗散不是各向同性对紊流产生的影响,采用Jones-Launder模型对管内紊流流动边界层厚度、边界层内的脉动动能K,动能耗散ε,管壁切应力τ0以及由此可得的管内流动摩擦阻力系数λ进行了数值计算,计算结果与实验值、理论计算值得具有较好的一致性。 相似文献
5.
高超声速激波湍流边界层干扰直接数值模拟研究 总被引:4,自引:7,他引:4
高超声速激波与湍流边界层干扰会导致飞行器表面出现局部热流峰值,严重影响飞行器气动性能和飞行安全. 针对高马赫数激波干扰问题,以往数值研究多采用雷诺平均方法,而在直接数值模拟方面的相关工作较为少见. 开展高超声速激波与湍流边界层干扰的直接数值模拟研究,有助于进一步提升对其复杂流动机理认识和理解,同时也将为现有湍流模型和亚格子应力模型的改进提供理论依据. 采用直接数值模拟方法对来流马赫数6.0,34°压缩拐角内激波与湍流边界层的干扰问题进行了研究. 基于雷诺应力各向异性张量,分析了高超声速湍流边界层在压缩拐角内的演化特性. 通过对湍动能输运方程的逐项分析,系统地研究了可压缩效应对湍动能及其输运的影响机制. 采用动态模态分解方法,探讨了干扰流场的非定常运动历程. 研究结果表明,随着湍流边界层往下游发展,近壁湍流的雷诺应力状态由两组元轴对称状态逐渐演化为两组元状态,外层区域则由轴对称膨胀趋近于各向同性. 干扰流场内存在强内在压缩性效应(声效应),其对湍动能输运的影响主要体现在压力--膨胀项,而对膨胀--耗散项影响较小. 高超声速下压缩拐角内的非定常运动仍存在以分离泡膨胀/收缩为特征的低频振荡特性,其物理机制与分离泡剪切层密切相关. 相似文献
6.
对流边界层湍流特性的数值研究 总被引:2,自引:0,他引:2
采用大涡模拟方法研究了存在逆温层的情况下大气对流边界层的湍流特性。实际大气边界层中出现逆温层是较常见的,逆温层会导致大气边界层湍流结构的变化,从而影响大气的湍流扩散和输运特性。本文比较了不同逆温梯度的工况,着重分析了逆温层对边界层中热量逆梯度输运(counter gradient heat transportation,CGHT)的影响。计算结果表明:逆温梯度越大,对流边界层的发展越受到抑制;逆温层高度降低会影响整个对流边界层的温度抬升;逆温梯度越大,垂直速度方差越小;在逆温梯度较大的情况下,其逆梯度输运区域要略微低一些,初步分析认为是由于逆温层对热对流的抑制造成的;对于逆温层高度不同的情况,高度越低的逆温层对逆梯度输运的抑制作用更明显。 相似文献
7.
低湍流度风洞中湍流度对平板边界层转捩影响的试验研究 总被引:2,自引:0,他引:2
本文报告了在西北工业大学壁低流度风洞中进行了平板边界层转捩试验研究的简况及初步结果,试验湍流度为0.02%、0.1%及0.33%,用恒温热线风速仪测量时均速度型,求得边界层沿流向的位移厚度分布,并用示波器观察速度脉动脉形变化,从而确定起始转捩点和完全转捩点位置。结果表明,转捩的规律性和国外经典结果极为吻合。 相似文献
8.
运用数值方法,模拟出展向分布的同向倾斜微型射流列与平板湍流边界层相互作用形成流向涡列的流场结构,验证了利用其来对湍流边界层进行控制的可能性.随射流间距减小,流向涡列控制作用流向渗透能力增强,但作用区域减小;随射流速度提高,流向涡列控制作用增强,但过大的射流速度反而会导致流向涡列在局部区域内控制作用的下降;随射流俯仰角减小、倾斜角增大,流向涡列初始控制作用增强,但过小的俯仰角、过大的倾斜角会导致流向涡列流向控制区域明显缩小.要保证流向涡列具有较强的湍流边界层控制作用,必须通过合理配置射流列各主要参数,在保证各流向涡具有一定强度的同时,还要确保各流向涡在形成时部分嵌入边界层内部. 相似文献
9.
一种适用于超音速边界层的湍流转捩模式 总被引:4,自引:0,他引:4
建立一种合理反映扰动模态和可压缩性影响的新型k-ω-γ转捩模式.其主要特点为:(1)假设脉动动能k 由湍流脉动部分和非湍流脉动部分组成,且在模化后者时采用了稳定性分析的结果; (2)在间歇因子γ方程的源项中,构造了具有``自动判断转捩起始位置'功能的函数; (3)通过构造新型的物面法向长度尺度,保证了模式中所有的表达式均由当地变量构成,可以方便地应用于现代CFD程序之中. 该模式在亚音速、超音速和高超音速条件下的边界层流动中进行了验证. 计算结果表明,该模式可应用于较宽马赫数范围内的自然转捩以及旁路转捩过程,所具有的捕捉流动转捩的性能优于国际上的现有模式. 相似文献
10.
沟槽面与光滑面湍流边界层特性比较 总被引:3,自引:0,他引:3
应用LDV技术对沟槽面及光滑面湍流边界层流速和湍流度分布进行了精细的测量,实验结果表明:与光滑面相比,沟槽面湍流边界层时均流速分布对数公式中具有较大的积分常数C值,且沟槽面湍流度最大值较小,但其出现的位置距壁面较远。另外,偏斜因子及平坦因子的分布特性区别不大,但是在近壁区内沟槽面结果波动较大。 相似文献
11.
大气边界层模拟的湍流相似 总被引:3,自引:0,他引:3
大气边界层的风洞模拟,是目前研究建筑物风载,污染质的大气扩散,以及解决某些环境科学和军事科学中大型课题的重要手段之一。在许多国家,风洞模拟已成为环境部门设计大型工程、林区、厂区和城区规划的主要依据。最初的大气边界层模拟装置,仅考虑形成一定的平均风速廓线,并未考虑到气流的湍流特性。微气象学的研究表明,大气的湍流特性是影响扩散的主要因素。特别是Monin和Obukhov通过大量实测资料提出大气表面层中的相似性理论,成为研究大气扩散的重要依据。从50年代开始,一些研究大气扩散和建筑物风载问题的长实验段风洞相继筹划和建立。其中较著名的有,美国科罗拉多州立大学的1.8米×1.8米×30米的回流式长实验段气 相似文献
12.
本文使用一种新的流动显示方法——激光片光运动法和几种实验技巧对湍流边界层中的马蹄形涡进行了观测,发现并描述了其形成的四种方式:二次不稳定式、组合式、变形式和突发式。对这四种马蹄形涡的形成及发展进行了研究和比较。实验结果表明,这些马蹄形涡在尺度、运动速度和变形上是有差别的。 相似文献
13.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析 总被引:2,自引:0,他引:2
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB
表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边
界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速
度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的
速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB
水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成
项减小最终降低流体的输送动力. 相似文献
14.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因. 相似文献
15.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响 总被引:1,自引:0,他引:1
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果. 相似文献
16.
采用粒子图像测速技术(particle image velocimetry,PIV)在平板湍流边界层内开展实验研究,对比颗粒相及单相液体的平均速度剖面、湍流强度、雷诺应力等湍流统计量,分析颗粒在湍流边界层中的行为.利用空间多尺度局部平均涡量的概念提取壁湍流发卡涡展向涡头(顺向涡)并统计其数量规律,得到不同法向位置处顺向涡周围流向脉动速度及流线的空间拓扑结构,比较分析顺向涡发展程度及周围的湍流相干结构.结果发现:与清水工况相比,颗粒相湍流边界层的缓冲层变薄、对数律区下移,湍流强度得到增强,雷诺应力在对数律区有所增大;颗粒的流向脉动速度在展向涡周围的分布与清水工况不同,颗粒能够被流体展向涡周围的猝发过程有效传递;颗粒相的顺向涡涡核较大,且随着法向位置的升高逐渐发展完整,涡和条带在流向上拉伸得更长;同时发现在两种工况下,顺向涡的左下方始终存在一个逆向涡,颗粒相逆向涡的形成弱于单相流体;两种工况下的顺向涡数量均随着法向位置的升高而减少,最后逐渐趋于稳定. 相似文献
17.
用平均速度剖面法测量壁湍流摩擦阻力 总被引:9,自引:1,他引:9
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法. 相似文献
18.
TRPIV MEASUREMENT OF DRAG-REDUCTION IN THE TURBULENT BOUNDARY LAYER OVER RIBLETS PLATE 总被引:1,自引:0,他引:1
采用高时间分辨率粒子图像测速技术对沟槽壁面平板湍流边界层速度矢量场的时间序列及其统计量进行了实验测量,讨论了在同一来流速度下沟槽壁面对平均速度剖面﹑雷诺切应力及湍流强度的影响. 用流向速度分量的多尺度空间局部平均结构函数辨识壁湍流多尺度相干结构,用条件采样和相位平均技术提取壁湍流多尺度相干结构喷射和扫掠事件的脉动速度、展向涡量的二维空间拓扑形态. 结果表明,与同材料光滑壁面对比,沟槽壁面实现了10.73%的摩阻减小量;沟槽壁面湍流边界层湍流强度及雷诺切应力皆比光滑平板湍流边界层对应统计量小,说明沟槽壁面有效降低了湍流边界层内流体的脉动. 通过比较壁湍流相干结构猝发事件各脉动速度分量与展向涡量的空间分布特征,肯定了沟槽壁面的减阻效果,发现沟槽壁面通过抑制相干结构猝发事件实现减阻. 相似文献
19.
超声速平板边界层斜波失稳转捩过程研究 总被引:6,自引:0,他引:6
以5阶迎风和6阶对称紧致格式混合差分求解三维可压缩滤波Navier-Stokes方程,对Mach
数为4.5, Reynolds数为10000的空间发展平板边界层湍流进行了大涡模拟. 时间推进采用
紧致存储3阶Runge-Kutta方法,亚格子尺度模型为修正Smagorinsky涡黏性模型. 通过在
入口边界叠加一对线性最不稳定第一模态斜波扰动,数值模拟得到了平板层流边界层失稳转
捩直至湍流的演化过程. 对流场转捩过程中瞬时量及统计平均量的分析表明,数值模拟结果
与理论吻合,得到的Y型剪切层、交替\Lambda涡结构以及转捩后期的发卡涡结构的发展
变化与相关文献结果一致,湍流流谱定性合理. 相似文献
20.
利用直接数值模拟、点球浸入边界法和颗粒离散元法相结合的方法, 模拟了颗粒在明渠湍流边界层中的运动, 并对颗粒的瞬时位置进行了Voronoi 分析, 定量研究了颗粒在湍流边界层中的运动和分布规律. 研究发现:颗粒的输运对湍流的统计特征有影响, 其运动与近壁区湍流拟序结构密切相关, 在"喷发"结构作用下被带离壁面, 在"扫掠" 结构和自身重力作用下回到壁面; 在湍流边界层中, 颗粒倾向于聚集在低流速带, 呈条带状分布;颗粒在大部分时间处于"簇"状态, 偶尔跳跃到"空" 状态, 但能够很快回到邻近低速区域. 相似文献