首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The development of disilane‐bridged donor–acceptor–donor (D‐Si‐Si‐A‐Si‐Si‐D) and acceptor–donor–acceptor (A‐Si‐Si‐D‐Si‐Si‐A) compounds is described. Both types of compound showed strong emission (λem=ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation‐induced emission enhancement in solution. X‐ray diffraction revealed that the crystal structures of 2 , 4 , and 12 had no intermolecular π–π interactions to suppress the nonradiative transition in the solid state.  相似文献   

6.
7.
8.
9.
A range of covalently linked donor–acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5‐dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the π‐donor, and 4) cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the π‐accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The π‐donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self‐complexing/decomplexing equilibria were shown to be highly temperature dependent when the π‐donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable‐temperature 1H NMR spectroscopy. The negative ΔH° and ΔS° values account for the fact that the “uncomplexed” conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor–acceptor interactions. The arm's in‐and‐out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self‐complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF‐containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self‐complexing compounds could find applications as thermo‐ and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials.  相似文献   

10.
A tetrathiafulvalene (TTF) donor is annulated to porphyrins (P) via quinoxaline linkers to form novel symmetric P–TTF–P triads 1 a – c and asymmetric P–TTF dyads 2 a , b in good yields. These planar and extended π‐conjugated molecules absorb light over a wide region of the UV/Vis spectrum as a result of additional charge‐transfer excitations within the donor–acceptor assemblies. Quantum‐chemical calculations elucidate the nature of the electronically excited states. The compounds are electrochemically amphoteric and primarily exhibit low oxidation potentials. Cyclic voltammetric and spectroelectrochemical studies allow differentiation between the TTF and porphyrin sites with respect to the multiple redox processes occurring within these molecular assemblies. Transient absorption measurements give insight into the excited‐state events and deliver corresponding kinetic data. Femtosecond transient absorption spectra in benzonitrile may suggest the occurrence of fast charge separation from TTF to porphyrin in dyads 2 a , b but not in triads 1 a – c . Clear evidence for a photoinduced and relatively long lived charge‐separated state (385 ps lifetime) is obtained for a supramolecular coordination compound built from the ZnP–TTF dyad and a pyridine‐functionalized C60 acceptor unit. This specific excited state results in a (ZnP–TTF)?+ ??? (C60py)?? state. The binding constant of ZnII ??? py is evaluated by constructing a Benesi–Hildebrand plot based on fluorescence data. This plot yields a binding constant K of 7.20×104 M ?1, which is remarkably high for bonding of pyridine to ZnP.  相似文献   

11.
Summary: The thiophene‐quinoxaline donor–acceptor conjugated copolymer poly[(thiophene‐2,5‐diyl‐alt‐(2,3‐diheptylquinoxaline‐5,8‐diyl)] (PTHQx) was explored as a semiconductor in thin‐film organic field‐effect transistors (OFETs). A hole mobility of 3.6 × 10−3 cm2 · V−1 · s−1 and an on/off current ratio of 6 × 105 were observed in p‐channel OFETs made from spin‐coated PTHQx thin films. The electronic structures of PTHQx and a related thiophene‐thienopyrazine donor–acceptor copolymer were calculated by density functional theory. Atomic force microscopy of PTHQx thin films showed a polycrystalline grain morphology that varied with the substrate.

Output (left) and transfer (right) characteristics of a PTHQx (structure shown) organic field‐effect transistor.  相似文献   


12.
13.
14.
《化学:亚洲杂志》2017,12(15):1935-1943
3‐Hexyloxy‐4‐cyanothiophene, 3‐pyrrolidil‐4‐cyanothiophene, and 3,4‐ethylenedioxythiophene (EDOT) units are used with benzothiadiazole as building blocks for the development of three new conjugated donor–acceptor–donor (DAD) derivatives. The DAD molecules have the central acceptor part, which is formed by combining electron‐withdrawing cyano groups and the benzothiadiazole moiety, in common. Theoretical calculations and UV/Vis and electrochemical data reveal the key role of the end‐capped donor to tune the electronic properties of the derivatives. A study of the electropolymerization process of the three derivatives shows the strong influence of the donor parts on both the reactivity of the precursors and the electronic properties of the resulting polymers. Derivatives end‐capped with pyrrolidinocyano thiophene or EDOT units lead to films of polymers presenting low band gaps of around 0.9–1.4 eV. Upon oxidation, the two polymers present different behavior. In the presence of the pyrrolidinocyano thiophene moieties, oxidation leads to a blueshift of the absorption bands, whereas with EDOT units a classical redshift, giving high absorption in the near‐IR region, is observed for the oxidized states.  相似文献   

15.
A new solid‐sate donor–acceptor system based on periodic mesoporous organosilica (PMO) has been constructed. Viologen (Vio) was covalently attached to the framework of a biphenyl (Bp)‐bridged PMO. The diffuse reflectance spectrum showed the formation of charge‐transfer (CT) complexes of Bp in the framework with Vio in the mesochannels. The transient absorption spectra upon excitation of the CT complexes displayed two absorption bands due to radical cations of Bp and Vio species, which indicated electron transfer from Bp to Vio. The absorption bands slowly decayed with a half‐decay period of approximately 10 μs but maintained the spectral shape, thereby suggesting persistent charge separation followed by recombination. To utilize the charge separation for photocatalysis, Vio–Bp–PMO was loaded with platinum and its photocatalytic performance was tested. The catalyst successfully evolved hydrogen with excitation of the CT complexes in the presence of a sacrificial agent. In contrast, reference catalysts without either Bp–PMO or Vio gave no or little hydrogen generation, respectively. In addition, a homogeneous solution system of Bp molecules, methylviologen, and colloidal platinum also evolved no hydrogen, possibly due to a weaker electron‐donating feature of molecular Bp than that of densely packed Bp in Bp–PMO. These results indicated that densely packed Bp and Vio are essential for hydrogen evolution in this system and demonstrated the potential of PMO as the basis for donor–acceptor systems suitable for photocatalysis.  相似文献   

16.
17.
The crystal structures of five N‐arylpiperidin‐4‐one derivatives 2P2, 3P2, 5P2, 1P3 , and 2P3 are presented (Fig. 2 and Tables 1–5) and discussed together with the derivatives 1P2 and 4P2 published previously. In all but one structure, 1P2 , the aryl group is in an equatorial position. The piperidine ring adopts a normal chair conformation. In 1P2 , the piperidine ring central C? C bonds are significantly elongated, which is consistent with the idea that through‐bond interaction is more pronounced in the axial conformation. Through‐bond interaction also influences the pyramidalization at the piperidine C(4)‐atom in such a way that a strong interaction is directing the ethylene C‐atom C(9) into the axial direction.  相似文献   

18.
19.
20.
Photochromic 1,2‐dithienylethene (DTE) derivatives with a high thermal stability and fatigue resistance are appealing for optical switching of fluorescence. Here, we introduce a donor–photochromic bridge–acceptor tetraphenylethene‐dithienylethene‐perylenemonoimide (TPE‐DTE‐PMI) triad, in which TPE acts as the electron donor, PMI as the electron acceptor, and DTE as the photochromic bridge. In this system, the localized and intramolecular charge transfer emission of TPE‐DTE‐PMI with various Stokes shifts have been observed due to the photoinduced intramolecular charge transfer in different solvents. Upon UV irradiation, the fluorescence quenching resulting from photochromic fluorescence resonance energy transfer in TPE‐DTE‐PMI has been demonstrated in solution and in solid films. The fluorescence on/off switching ratio in polymethylacrylate film exceeds 100, a value much higher than in polymethylmethacrylate film, thus indicating that the fluorescence switching is dependent on matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号