首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The substitution effect of various functional groups such as –NO2, –CN, –N3, –NF2, and –NH2 on the density of tetrazolium nitrate salts is investigated through multiple linear regression method. The methodology of this work introduces a new model, which related density of tetrazolium nitrate salts to the number of fluorine and nitrogen atoms, the presence of NF2 groups, NO2 groups, as well as CH3 groups in the structural formula. The new reliable correlation shows that the NF2 and NO2 group can cause increasing the density of tetrazolium nitrate salts, especially NO2, whereas the CH3 group can decrease their density. The new proposed relationship has good reliability and predictability, so it can be used to design new rich nitrogen compounds based on tetrazolium nitrate salts as green energetic materials. These results are also tested for N,N′‐azo‐1,2,4‐triazolium nitrate salts, which is caused to derive another correlation. This correlation shows that the presence of NF2 functional groups increases the density of N,N′‐azo‐1,2,4‐triazolium nitrate salts as well as the value of nO/nC.  相似文献   

4.
We designed a new family of pentazole‐based high energy density compounds with oxygen balance equal to zero by introducing −NH2, −NO2, −N3, −CF2NF2, and −C[NO2]3, and the properties including density, heats of formation, detonation performances, and impact sensitivity were investigated using density functional theory. The results show that half of these new energetic molecules exhibit higher densities than RDX (1.82 g/cm3), in which H5 gives the highest density of 2.09 g/cm3. Among all the 54 designed molecules, 22 compounds have higher D and P than RDX and eleven compounds have higher D and P than HMX, indicating that designing the pentazole‐based derivatives with oxygen balance equal to zero is a very effective way to obtain potential energetic compounds with outstanding detonation properties. Taking both the detonation performance and stability into consideration, nine compounds may be recognized as potential candidates of high energy density compounds. It is expected that our results will contribute to the theoretical design of new‐generation energetic explosives.  相似文献   

5.
The relationship between detonation velocity and the elemental composition of components of aluminized explosives are assessed through quantitative structure-property relationship (QSPR). Here, two new reliable, simple models are proposed for estimating aluminized explosives detonation heat and velocity based on molecular structure by applying QSPR. In this methodology it is assumed that these two detonation parameters can be presented as a function of elemental composition, density and several structural parameters. This new correlation of heat detonation has determination coefficient of 0.930, root mean square deviation (RMSD) of 324.4 and average absolute deviation (AAD) of 446kJ · kg–1 for 36 aluminized explosives with different molecular structures as the training set. The predictive power of this new correlation is checked through a cross validation method. Statistical parameters reveal relatively good result for this correlation. Also, the determination coefficient of detonation velocity for the other new model is 0.960 and it has 151.1 (RMSD) and 107.9 m · s–1 (AAD) for 42 aluminized explosives with different molecular structures as training set. Reliability and validity of new correlation investigated (Q2Ext = 0.948, Q2LOO = 0.938, and Q2LMO = 0.937). The good ability of this new model for prediction detonation velocity of aluminized explosives are confirmed.  相似文献   

6.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

7.
The amino, azido, nitro, and nitrogen‐rich azole substituted derivatives of 1H‐benzotriazole have been synthesized for energetic material applications. The synthesized compounds were fully characterized by 1H and 13C NMR spectroscopy, IR, MS, and elemental analysis. 5‐Chloro‐4‐nitro‐1H‐benzo[1,2,3]triazole ( 2 ) and 5‐azido‐4,6‐dinitro‐1H‐benzo[1,2,3]triazole ( 7 ) crystallize in the Pca21 (orthorhombic) and P21/c (monoclinic) space group, respectively, as determined by single‐crystal X‐ray diffraction. Their densities are 1.71 and 1.77 g cm?3, respectively. The calculated densities of the other compounds range between 1.61 and 1.98 g cm?3. The detonation velocity (D) values calculated for these synthesized compounds range from 5.45 to 8.06 km s?1, and the detonation pressure (P) ranges from 12.35 to 28 GPa.  相似文献   

8.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

9.
In this work, we present a theoretical study (based on DFT‐calculations) of the electronic properties of compounds crystallising in a NH4Pb2Br5 type structure in a wide pressure range. The main focus of this study is to elucidate the nature of bonding of the ns2‐cations at ambient and elevated pressure. For a better understanding of the structure and bonding, the DOS of these compounds are evaluated and discussed on the basis of a simple model assuming mainly ionic interactions. The calculations are complemented by an orbital analysis using the crystal orbital Hamilton population (COHP) and an analysis of the electronic density topology with the electron localisation function (ELF). Structural and theoretical investigations give results that are in excellent agreement: The DFT‐calculations confirm the existence of bonding interactions between the ns2‐cations at elevated pressure. Our study indicates that the “character” of the additional electron pair changes with increasing pressure from nonbonding to bonding in agreement with a simple model system of two interacting ns2‐cations.  相似文献   

10.
11.
Nitro compounds have been actively researched as driven by their potential to be high‐performing energetic materials. Herein, three new nitro compounds including semicarbazide 3,5‐dinitrobenzoate, (SCZ)(DNBA), manganese 3,5‐dinitrobenzoate dihydrate, [Mn(DNBA)2(H2O)2]n, and bis(semicarbazide) manganese(II) 3,5‐dinitrobenzoate, Mn(SCZ)2(DNBA)2, were synthesized and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction analysis. The results indicated that the above mentioned compounds are ionic, polymeric, and molecular in nature, respectively. Moreover, their thermal decomposition properties were assessed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their non‐isothermal reaction kinetics parameters, critical temperature of thermal explosion (Tbp), entropy of activation (ΔS), enthalpy of activation (ΔH), and free energy of activation (ΔG) of the exothermic decomposition process were also calculated. Results suggest that there was a relationship between the structure and thermal stability.  相似文献   

12.
Lanthanum‐139 NMR spectra of stationary samples of several solid LaIII coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical‐shift anisotropy on the NMR spectra is non‐negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (CQ) range from 10.0 to 35.6 MHz, the spans of the chemical‐shift tensor (Ω) range from 50 to 260 ppm, and the isotropic chemical shifts (δiso) range from ?80 to 178 ppm. In general, there is a correlation between the magnitudes of CQ and Ω, and δiso is shown to depend on the La coordination number. Magnetic‐shielding tensors, calculated by using relativistic zeroth‐order regular approximation density functional theory (ZORA‐DFT) and incorporating scalar only or scalar plus spin–orbit relativistic effects, qualitatively reproduce the experimental chemical‐shift tensors. In general, the inclusion of spin–orbit coupling yields results that are in better agreement with those from the experiment. The magnetic‐shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical‐shift and EFG tensors in the molecular frame. This study demonstrates that solid‐state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.  相似文献   

13.
Lanthanide‐based extended coordination frameworks showing photocontrolled single‐molecule magnet (SMM) behavior were prepared by combining highly anisotropic DyIII and HoIII ions with the carboxylato‐functionalized photochromic molecule 1,2‐bis(5‐carboxyl‐2‐methyl‐3‐thienyl)perfluorocyclopentene (H2dae), which acts as a bridging ligand. As a result, two new compounds of the general formula [{LnIII2(dae)3(DMSO)3(MeOH)} ? 10 M eOH]n (M=Dy for 1 a and Ho for 2 ) and two additional pseudo‐polymorphs [{DyIII2(dae)3(DMSO)3(H2O)} ? x MeOH]n ( 1 b ) and [{DyIII2(dae)3(DMSO)3(DMSO)} ? x MeOH]n ( 1 c ) were obtained. All four compounds have 2D coordination‐layer topologies, in which carboxylate‐bridged Ln2 units are linked together by dae2? anions into grid‐like frameworks. All four compounds exhibited a strong reversible photochromic response to UV/Vis light. Moreover, both 1 a and 2 show field‐induced SMM behavior. The slow magnetic relaxation of 1 a is influenced by the photoisomerization reaction leading to the observation of the cross‐effect: photocontrolled SMM behavior.  相似文献   

14.
Four novel diorganotin(IV) complexes with general formula R2SnL (R = nBu, PhCH2) were synthesized from diorganotin dichlorides and binary Schiff‐bases (H2L) containing N2O2 donor atoms in the presence of sodium ethoxide. The Schiff bases were prepared by reactions of o‐phenylenediamine with 3‐tert‐butyl‐2‐hydroxy‐5‐methylbenzaldehyde (H2L1) and salicylaldehyde (H2L2) respectively. The compounds were characterized by elemental analyses, IR, and NMR spectroscopy. The solid‐state crystal structure of the compound nBu2SnL1 was determined by single‐crystal structural analysis.  相似文献   

15.
High‐density energetic salts that contain nitrogen‐rich cations and the 5‐(tetrazol‐5‐ylamino)tetrazolate (HBTA?) or the 5‐(tetrazol‐5‐yl)tetrazolate (HBT?) anion were readily synthesized by the metathesis reactions of sulfate salts with barium compounds, such as bis[5‐(tetrazol‐5‐ylamino)tetrazolate] (Ba(HBTA)2), barium iminobis(5‐tetrazolate) (BaBTA), or barium 5,5′‐bis(tetrazolate) (BaBT) in aqueous solution. All salts were fully characterized by IR spectroscopy, multinuclear (1H, 13C, 15N) NMR spectroscopy, elemental analyses, density, differential scanning calorimetry (DSC), and impact sensitivity. Ba(HBTA)2 ? 4 H2O crystallizes in the triclinic space group P$\bar 1$ , as determined by single‐crystal X‐ray diffraction, with a density of 2.177 g cm?3. The densities of the other organic energetic salts range between 1.55 and 1.75 g cm?3 as measured by a gas pycnometer. The detonation pressure (P) values calculated for these salts range from 19.4 to 33.6 GPa, and the detonation velocities (νD) range from 7677 to 9487 m s?1, which make them competitive energetic materials. Solid‐state 13C NMR spectroscopy was used as an effective technique to determine the structure of the products that were obtained from the metathesis reactions of biguanidinium sulfate with barium iminobis(5‐tetrazolate) (BaBTA). Thus, the structure was determined as an HBTA salt by the comparison of its solid‐state 13C NMR spectroscopy with those of ammonium 5‐(tetrazol‐5‐ylamino)tetrazolate (AHBTA) and diammonium iminobis(5‐tetrazolate) (A2BTA).  相似文献   

16.
为了预测二元无机物的标准熵,基于分子图的连接矩阵和离子参数gi、qi,提出了一种新的连接性指数mQ, mG及其逆指数mQ’, mG’。 qi、gi定义为:qi=(1.1+Zi1.1) /(1.7+ni), gi=(1.4+Zi) /(0.9+ri+ri-1),其中Zi 、ni和 ri分别代表离子i的电荷数、最外层主量子数和半径。从0Q, 0Q’, 1G,和1G’,利用多元线性回归分析方法和人工神经网络方法,可以构建优良的QSPR模型。对371个二元无机物,其多元线性模型及神经网络模型的相关系数、标准偏差和平均绝对偏差分别是:0.9905, 8.29 J.K-1.mol-1, 6.48 J. K-1.mol-1, 0.9960, 5.37 J.K-1.mol-1 和 3.90 J.K-1.mol-1。留一法交叉验证表明,其多元线性模型具有良好的稳定性。两个模型对187个未进入模型的二元无机物的标准熵的预测值和实验值之间的相关系数、标准偏差和平均绝对偏差分别是:0.9897, 8.64 J. K-1.mol-1, 6.84 J. K-1.mol-1, 0.9957, 5.63 J.K-1.mol-1, 和 4.18 J.K-1.mol-1。研究表明,本文方法在预测二元无机物标准熵时比文献方法更有效,两种模型均能较精确的预测二元无机物的标准熵,且神经网络模型的预测结果更精确。  相似文献   

17.
Using density functional theory and a hybrid exchange‐correlation functional, a systematic study of the stability and electronic structure of neutral and multiply charged organic molecules, BnC6?nX6 (n=0, 1, 2; X=H, F, CN) and BnC5?nX5 (n=0, 1; X=H, F, CN) is performed. The results show that in addition to the aromaticity of the molecules, substituents play an important role in stabilizing the organic dianion complexes. In particular, it is demonstrated that CN groups are responsible for the stability of organic dianions as it has recently been found to be the case in B‐cage compounds such as B12(CN)122? and CB11(CN)122?. It is also shown that the stable organic dianions B2C4(CN)62? and BC4(CN)52? might be halogen‐free electrolytes in Li‐ion batteries.  相似文献   

18.
Through the use of a fully C/N‐functionalized imidazole‐based anion, it was possible to prepare nitrogen‐ and oxygen‐rich energetic salts. When N,N‐dinitramino imidazole was paired with nitrogen‐rich bases, versatile ionic derivatives were prepared and fully characterized by IR, and 1H, and 13C NMR spectroscopy and elemental analysis. Both experimental and theoretical evaluations show promising properties for these energetic compounds, such as high density, positive heats of formation, good oxygen balance, and acceptable stabilities. The energetic salts exhibit promising energetic performance comparable to the benchmark explosive RDX (1,3,5‐trinitrotriazacyclohexane).  相似文献   

19.
In order to study the properties of new energetic compounds formed by introducing nitroazoles into 2,4,6-trinitrobezene, the density, heat of formation and detonation properties of 36 nitro-1-(2,4,6-trinitrobenzene)-1H-azoles energetic compounds are studied by density functional theory, and their stability and melting point are predicted. The results show that most of target compounds have good detonation properties and stability. And it is found that nitro-1-(2,4,6-Trinitrophenyl)-1H-pyrrole compounds and nitro-1-(2,4,6-trinitrop-enyl)-1H-Imidazole compounds have good thermal stability, and their weakest bond is C NO2 bond, the bond dissociation energy of the weakest bond is 222–238 kJ mol−1 and close to 2,4,6-trinitrotoluene (235 kJ mol−1). The weakest bond of the other compounds may be the C NO2 bond or the N N bond, and the strength of the N N bond is related to the nitro group on azole ring.  相似文献   

20.
Reaction of Co(II) with the nitrogen‐rich ligand N,N‐bis(1H‐tetrazole‐5‐yl)‐amine (H2bta) leads to a mixed‐valence, 3D, porous, metal–organic framework (MOF)‐based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n?(22 H2O)n ( 1 ). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm?3, [Co9(bta)10(Hbta)2(H2O)10]n ( 2 ). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1 , reflecting guest‐dependent energy and sensitivity of 3D, MOF‐based, energetic materials. Less‐sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号