首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The La based perovskite type LaMO3 (M = Ni, Co) oxides were prepared by combustion synthesis method using citric acid as organic fuel. These catalyst precursors tested for ammonia decomposition. The LaNiO3 and LaCoO3 catalysts showed good activity for NH3 decomposition. The LaNiO3 catalyst displayed greater activity than LaCoO3. This due to high surface area and easily reducibility of Ni species. A 50% of La was substituted by Ce in both LaNiO3 and LaCoO3 catalysts. A remarkable effect on catalytic performance was observed with the partial substitution of La by Ce in perovskite catalyst especially at lower temperatures. The La0.5Ce0.5NiO3 catalyst exhibited highest activity among all prepared samples. The achieved superior activity is due to boost in surface area, reducibility and suitable basicity. The SEM elemental mapping of La0.5Ce0.5NiO3 catalyst concluded that metal oxide constituents dispersed homogeneously. The La0.5Ce0.5NiO3 catalyst showed excellent stable catalytic performance during 50 h time on study at 550 °C.  相似文献   

2.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

3.
The effects of Ru on the self-reducibility of Ru-doped Ni/MgAl2O4 catalysts, which do not need pre-reduction treatment with H2, were investigated in the steam reforming of methane (SRM). The Ru-promoted Ni/MgAl2O4 catalysts with various amounts of Ru (0–0.5 wt%) were prepared by stepwise impregnation and co-impregnation methods using hydrotalcite-like MgAl2O4 support. For comparison, Ru/MgAl2O4 catalysts with the same amount of Ru were also prepared by the impregnation method. The catalysts were characterized by the N2-sorption, XRD, H2-TPR, H2-chemisorption, and XPS methods. Ni/MgAl2O4 catalyst in the presence of even the trace amount of Ru (Ru content ≥0.05 wt%) showed higher conversion without pre-reduction as compared to Ru/MgAl2O4 catalysts in SRM under the same conditions. The self-activation of Ru–Ni/MgAl2O4 catalysts is mainly attributed to the spillover of hydrogen, which is produced on Ru at first and then reduces NiO species under reaction conditions. Besides, Ru doping makes the reduction of NiO easier. The stepwise impregnated Ru/Ni/MgAl2O4 catalyst produced superior performance as compared to co-impregnated Ru–Ni/MgAl2O4 catalyst for SRM.  相似文献   

4.
In this paper, a new catalyst system Cu‐Mn‐(M)/γ‐Al2O3 was developed for the directly synthesis dimethyl ether (DME) from synthesis gas in a fixed‐bed reactor. The catalysts with different n (Cu) : n (Mn) ratios, several promoter M (M is one of Zn, Cr, W, Mo, Fe, Co or Ni) were prepared and tested. The results showed the catalysts have a high conversion of CO and a high DME selectivity. The DME yield in tail gas reached 46.0% (at 63.27% conversion of CO) at 2.0 MPa, 275°C, 1500 h?1 with the Cu2Mn4Zn/γ‐Al2O3 catalyst.  相似文献   

5.
采用溶胶-凝胶法制备了一系列La1-xSrxNi1-yFeyO3 (x=0, 0.1, 0.2, 0.5; y=0~1.0)型的钙钛矿催化剂, 以活性碳为载体, PTFE乳液为粘接剂制备双功能氧电极. 对催化剂进行了XRD结构分析以及SEM分析和BET比表面积测量. 采用三电极体系测试了氧电极的稳态极化曲线和电化学交流阻抗谱并对其阴极极化和阳极极化的交流阻抗谱图进行分析. 通过等效电路的拟合研究了该系列双功能氧电极氧还原反应的工作机理. 实验表明对于LaNiO3化合物, B位掺杂可显著提高催化剂的电催化性能; 电极氧还原反应的极化主要由电荷转移反应和Nernstian扩散过程造成. 通过各个电极对于催化分解H2O2的分解速率常数的测定得知, Ni离子对于催化H2O2分解反应的活性大于Fe离子, 继续在对于氧还原反应和氧析出反应都具有较高电催化活性的LaNi0.8Fe0.2O3催化剂上进行A位掺杂Sr离子后显著提高了催化剂分解H2O2的催化活性, 主要是因为氧空位的增多和金属离子d电子含量的降低有利于催化分解H2O2的活性的提高, 但由于氧空位的增多导致催化剂电导率的降低, 所以其电催化活性降低了. 通过多圈循环伏安扫描的测试, 催化剂LaNi0.8Fe0.2O3有很好的稳定性.  相似文献   

6.
The catalytic activity and stability of LaNiO3 and La2NiO4, prepared using a citric acid complex method, have been investigated for partial oxidation of methane (POM) to synthesis gas. The catalysts were characterized by thermo-gravimetric analysis (TG), temperature-programmed reduction (TPR) and temperature-programmed desorption of ammonia (NH3-TPD). The results show that the catalytic activity and stability of La2NiO4 are higher than those of LaNiO3, due to the stronger interactions between Ni and La2O3 in La2NiO4 and to its lower acidity as demonstrated by TPR and NH3-TPD. TG result indicates that carbon deposition occurs on both catalysts, and the carbon species deposited on La2NiO4 are mainly metal carbides, while on LaNiO3 are mainly graphite.  相似文献   

7.
La8Cu7O19 was synthesized by solid state reaction of the oxides La2O3 and CuO at 1288 K in air. The crystal structure was determined by a joint Rietveld refinement of X‐ray and neutron powder diffraction data. La8Cu7O19 crystallizes in the monoclinic space group C2/c (No. 15) with the lattice parameters a = 13.8310(4)Å, b = 3.75827(9)Å, c = 34.5917(8)Å and β = 99.332(2)°. La8Cu7O19 is the n = 3 member of the homologous series La4+4nCu8+2nO14+8n. The Cu—O sub‐structure in La8Cu7O19 contains infinite ribbons, which can be described as perovskite type layers with a width of n = 3 Jahn‐Teller‐elongated octahedra, and Cu—O planes of complex geometry. DSC/TG‐measurements in different gas atmospheres show peritectic decomposition of La8Cu7O19. The anisotropic thermal expansion of the lattice parameters was investigated using synchrotron radiation. The Madelung part of lattice energy was calculated and compared with the corresponding values of other lanthanum cuprates.  相似文献   

8.
HMCM‐22 catalysts modified with La2O3 (5% La) and MgO (≈0.87% Mg) were prepared respectively by impregnation method, and were characterized by scanning electron microscopy, X‐ray diffraction, N2 physical adsorption‐desorption and temperature‐programmed desorption of NH3. The effect of supported metallic oxides (La2O3, MgO) on catalytic performance in xylene isomerization of C8 aromatics (ethylbenzene, m‐xylene and o‐xylene) was investigated in detail. The experimental results showed that 5% La/HMCM‐22 catalyst had higher isomerization activity and stronger shape‐selectivity than 0.87% Mg/HMCM‐22 catalyst, owing to its more acid sites and smaller pore size. And the loading amount of La was optimized to be about 7%. Moreover, supporting metal over 7% La/HMCM‐22, respectively with 0.3% Pt, 3% Ni and 3% Mo, was carried out to prepare bifunctional isomerization catalysts. In comparison, 3% Mo/7% La/HMCM‐22 showed the best catalytic performance with both high activity and high selectivity, with the low hydrocracking of m‐xylene and o‐xylene. Besides, the optimal reaction conditions were found: 340°C, 1.5 MPa H2, WHSV 4 h?1 and H2/C8 4 mol/mol. Under the above conditions, ethylbenzene conversion was up to 20%, para‐selectivity was over 23% with low xylene loss of 2.9%.  相似文献   

9.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

10.
Several rare earth‐doped, calcium‐based magnetic catalysts were prepared for the synthesis of glycerol carbonate. The basicity and basic strength analysis of the catalysts showed that the doping of rare earth improved the basicity of the catalysts, and the doping of lanthanum maximized it. In addition, with the doping of lanthanum, the particle size of the catalyst became smaller to promote the organic reactants near the active sites of catalysts, thereby effectively improving the performance. NiFe2O4@[CaO‐La2O3] shows better catalytic performance with 99.0% yield of glycerol carbonate compared to the other catalysts. The NiFe2O4@(CaO‐La2O3) could be reused in six cycles without significant loss in activity.  相似文献   

11.
The activity of Ni, Pt, and LaNiO3 supported on -Al2O3 is studied in the selective catalytic oxidation of methane to syngas at 900°C and a contact time of 0.002 s using dilute mixtures (1000 ppm CH4 + 500 ppm O2 in He). The grain size was 100 m. The method of X-ray phase analysis shows that supported LaNiO3, both pure and containing Pt, has a perovskite hexagonal structure with altered lattice parameters. Using temperature-programmed reduction by hydrogen, it was found that the reduction of supported LaNiO3 is simplified in the presence of Pt and/or Ce0.2Zr0.8O2. The activity and selectivity of the catalysts in the reaction of selective catalytic oxidation of methane depends on their composition and oxidative-reductive treatment. It was found that, in the presence of catalysts based on LaNiO3 and containing Pt and/or Ce0.2Zr0.8O2, the reaction occurs with an induction period. It was assumed that the value of the induction period depends both on the dynamics of phase LaNiO3 reduction to Ni, which is associated with the accumulation of carbonate complexes and surface hydroxylation, and on slow changes in the defect structure of Ce0.2Zr0.8O2, which are associated with oxidation-reduction.  相似文献   

12.
La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3?δ is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm‐scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A‐site cations with La3+ and local stress on Co‐site sub‐lattice with the cubic perovskite structure.  相似文献   

13.
Carbon‐supported NiII single‐atom catalysts with a tetradentate Ni‐N2O2 coordination formed by a Schiff base ligand‐mediated pyrolysis strategy are presented. A NiII complex of the Schiff base ligand (R,R)‐(?)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine was adsorbed onto a carbon black support, followed by pyrolysis of the modified carbon material at 300 °C in Ar. The Ni‐N2O2/C catalyst showed excellent performance for the electrocatalytic reduction of O2 to H2O2 through a two‐electron transfer process in alkaline conditions, with a H2O2 selectivity of 96 %. At a current density of 70 mA cm?2, a H2O2 production rate of 5.9 mol gcat.?1 h?1 was achieved using a three‐phase flow cell, with good catalyst stability maintained over 8 h of testing. The Ni‐N2O2/C catalyst could electrocatalytically reduce O2 in air to H2O2 at a high current density, still affording a high H2O2 selectivity (>90 %). A precise Ni‐N2O2 coordination was key to the performance.  相似文献   

14.
The valorization of methane and carbon dioxide is a promising solution for mitigating global warming. The dry reforming of methane (DRM) is capable of concomitant conversion of these greenhouse gases into starting materials for production of synthetic fuels, promoting a carbon neutral avenue for fuel production. The development of efficient, stable, and economic catalysts presents a challenge owing to the comparatively rapid deactivation of DRM catalysts under reaction conditions. Here, Ni/La2O3 DRM catalysts are prepared by combustion synthesis of Ni and La complexes of nitrogen-rich precursors. We expound the relationship between structures of the combustion precursors, the thermochemistry of their combustion, the structures of the resultant Ni/La2O3 catalysts, and their performance under DRM conditions. We show that the best catalyst is derived from energetic precursor which has the sharpest exotherm and rapidly releases the largest amounts of nitrogen gas. These properties give rise to the crystallization of the Ni/La2O3 catalyst with high Ni dispersion and strong metal-support interactions. This work can act as starting point to expand the link between the chemistry of combustion precursors and the resulting catalyst properties, eventually realizing the rational design of high-performance catalysts prepared by combustion synthesis through tailoring the chemistry and structure of the nitrogen-rich precursors.  相似文献   

15.
The activities of monometallic Pt-, Ru-, and Rh-containing catalysts supported on Al2O3, Al2O3—F, SiO2, WO3/ZrO2, and La2Î3/ZrO2, in cyclohexane ring opening to form n-hexane were studied. The most active catalyst is Rh/Al2O3. Cyclohexane hydrogenolysis to n-hexane also occurs over the Pt/Al;>2O3 and Pt/La2Î3/ZrO2 catalysts. Ring opening over the Ru catalysts proceeds at significantly lower temperatures (210—230 °C) than over the Pt and Rh catalysts (350—400 °C), but the ruthenium systems are less selective for n-hexane formation than Rh/Al2O3 catalysts. The effects of acid-basic properties of the support and the reaction conditions on the activities of the catalytic systems in cyclohexane ring opening was studied.  相似文献   

16.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

17.
meso‐Substituted cobalt porphyrins adsorbed on carbon black were prepared as catalysts for the electroreduction of O2. The catalyst, which was prepared by using a homogenizer in mixing cobalt tetraethylporphyrin and carbon black, gave rise to electroreduction of O2 at a remarkably positive potential (Ep = 0.45 V versus saturated calomel electrode (SCE)) and showed a high selectively for the four‐electron reduction (n = 3.8). Electrochemical study and extended X‐ray absorption fine structure (EXAFS) analysis revealed that the adsorbed face‐to‐face dimeric aggregates of cobalt porphyrin molecules were highly efficient catalysts for electroreduction of O2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The Ni/Mo/SBA-15 catalyst was modified by La2O3 in order to improve its thermal stability and carbon deposition resistance during the CO2 reforming of methane to syngas. The catalytic performance, thermal stability, structure, dispersion of nickel and carbon deposition of the modified and unmodified catalysts were comparatively investigated by many characterization techniques such as N2 adsorption, H2-TPR, CO2-TPD, XRD, FT-IR and SEM. It was found that the major role of La2O3 additive was to improve the pore structure and inhibit carbon deposition on the catalyst surface. The La2O3 modified Ni/Mo/SBA-15 catalyst possessed a mesoporous structure and high surface area. The high surface area of the La2O3 modified catalysts resulted in strong interaction between Ni and Mo-La, which improved the dispersion of Ni, and retarded the sintering of Ni during the CO2 reforming process. The reaction evaluation results also showed that the La2O3 modified Ni/Mo/SBA-15 catalysts exhibited high stability.  相似文献   

19.
Measurements of the temperature dependence of the electrical resistivity ρ(T), magnetic susceptibility χ(T), and Seebeck coefficient S(T) have been carried out on the n = 2, 3, and ∞ members of the homologous lanthanum nickel oxide systems Lan+1NinO3n+1 that were annealed in air. With increasing n, a progressive decrease in the electrical resistivity and a gradual change from insulating to metallic behavior are observed. La3Ni2O7 is nonmetallic, showing a gradual increase in ρ when T decreases (dp/dT < 0) from 300 to 4.2 K, whereas La4Ni3O10 and LaNiO3 exhibit metallic resistivity (dp/dT > 0). A minimum in ρ(T) near 140 K is observed for La4Ni3O10, while LaNiO3 exhibits a T2 dependence for ρ(T) below 50 K. The magnetic susceptibility of LaNiO3 is Pauli-like, but the χ(T) data for La3Ni2O7 and La4Ni3O10 below 350 K show a decrease with decreasing temperature. The Seebeck coefficient of all these compounds is negative at high temperatures; La3Ni2O7 and La4Ni3O10 exhibit a sign change in S at low temperatures. These results suggest a crossover from a fluctuating-valence to a Fermi-liquid-like behavior with increasing n.  相似文献   

20.
Ni‐based magnetic catalysts exhibit moderate activity, low cost, and magnetic reusability in hydrogenation reactions. However, Ni nanoparticles anchored on magnetic supports commonly suffer from undesirable agglomeration during catalytic reactions due to the relatively weak affinity of the magnetic support for the Ni nanoparticles. A hierarchical yolk–shell Fe@SiO2/Ni catalyst, with an inner movable Fe core and an ultrathin SiO2/Ni shell composed of nanosheets, was synthesized in a self‐templating reduction strategy with a hierarchical yolk–shell Fe3O4@nickel silicate nanocomposite as the precursor. The spatial confinement of highly dispersed Ni nanoparticles with a mean size of 4 nm within ultrathin SiO2 nanosheets with a thickness of 2.6 nm not only prevented their agglomeration during catalytic transformations but also exposed the abundant active Ni sites to reactants. Moreover, the large inner cavities and interlayer spaces between the assembled ultrathin SiO2/Ni nanosheets provided suitable mesoporous channels for diffusion of the reactants towards the active sites. As expected, the Fe@SiO2/Ni catalyst displayed high activity, high stability, and magnetic recoverability for the reduction of nitroaromatic compounds. In particular, the Ni‐based catalyst in the conversion of 4‐nitroamine maintained a rate of over 98 % and preserved the initial yolk–shell structure without any obvious aggregation of Ni nanoparticles after ten catalytic cycles, which confirmed the high structural stability of the Ni‐based catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号