首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multianionic metal hydrides, which exhibit a wide variety of physical properties and complex structures, have recently attracted growing interest. Here we present Sr6N[BN2]2H3, prepared in a solid-state ampoule reaction at 800 °C, as the first combination of nitridoborate, nitride and hydride anions within a single compound. The crystal structure was solved from single-crystal X-ray and neutron powder diffraction data in space group P21/c (no. 14), revealing a three-dimensional network of undulated layers of nitridoborate units, strontium atoms and hydride together with nitride anions. Magic angle spinning (MAS) NMR and vibrational spectroscopy in combination with quantum chemical calculations further confirm the structure model. Electrochemical measurements suggest the existence of hydride ion conductivity, allowing the hydrides to migrate along the layers.  相似文献   

2.
Complex hydrides, such as LiBH4, are a promising class of ion conductors for all-solid-state batteries, but their application is constrained by low ion mobility at room temperature. Mixing with halides or complex hydride anions, i.e., other complex hydrides, is an effective approach to improving the ionic conductivity. In the present study, we report on the reaction of LiBH4 with LiBF4, resulting in the formation of conductive composites consisting of LiBH4, LiF and lithium closo-borates. It is believed that the in-situ formation of closo-borate related species gives rise to highly conductive interfaces in the decomposed LiBH4 matrix. As a result, the ionic conductivity is improved by orders of magnitude with respect to the Li-ion conductivity of the LiBH4, up to 0.9 × 10−5 S cm−1 at 30 °C. The insights gained in this work show that the incorporation of a second compound is a versatile method to improve the ionic conductivity of complex metal hydrides, opening novel synthesis pathways not limited to conventional substituents.  相似文献   

3.
The stability and electronic structure of perovskite hydrides ABH3 were investigated by means of first-principles density functional calculations. Two types of perovskite hydrides are distinguished: (1) When A and B are alkali and alkaline earth metals, the hydrides are ionic compounds with calculated band gaps of around 2 eV and higher. Their stability trend follows basically the concept of Goldschmidt's tolerance factor. (2) When A is one of the heavier alkaline earth metals (Ca, Sr, Ba) and B a transition metal, stable compounds ABH3 result only when B is from the Fe, Co, or Ni groups. This stability trend is basically determined by effects associated with d band filling of both the transition metal and the hydride. In contrast to group (1) perovskites, the transition metal-containing compounds are metals. The synthesis of CaNiH3 and its structure determination from CaNiD3 is reported. This compound is a type (2) perovskite hydride with a fully occupied hydrogen position (CaNiD3: a=3.551(4) Å, dNi-D=1.776(2) Å). Its stability is discussed with respect to transition metal hydrides with complex anions (e.g., Mg2NiH4, Na2PdH2, Sr2PdH4).  相似文献   

4.
Semi‐automated thermodynamic and phase diagram calculations based on DFT and grand canonical linear programming (GCLP) methods are used to screen 102 ternary and quaternary complex transition metal hydrides (CTMHs) and 26 ternary saline hydrides in a library of over 260 metals, intermetallics, binary, and higher hydrides to identify materials that release H2 at higher temperatures than the associated binary hydrides and at elevated temperatures (T < 1000 K, 1 bar H2 overpressure).  相似文献   

5.
After briefly reviewing the applications of the coordination ability indices proposed earlier for anions and solvents toward transition metals and lanthanides, a new analysis of crystal structures is applied now to a much larger number of coordinating species: anions (including those that are present in ionic solvents), solvents, amino acids, gases, and a sample of neutral ligands. The coordinating ability towards s-block elements is now also considered. The effect of several factors on the coordinating ability will be discussed: (a) the charge of an anion, (b) the chelating nature of anions and solvents, (c) the degree of protonation of oxo-anions, carboxylates and amino carboxylates, and (d) the substitution of hydrogen atoms by methyl groups in NH3, ethylenediamine, benzene, ethylene, pyridine and aldehydes. Hit parades of solvents and anions most commonly used in the areas of transition metal, s-block and lanthanide chemistry are deduced from the statistics of their presence in crystal structures.  相似文献   

6.
Using a high pressure technique and the strong donating nature of H, a new series of tetragonal La2Fe2Se2O3‐type layered mixed‐anion arsenides, Ln2M2As2Hx, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x≈3). In these compounds, an unusual M2H square net, which has anti CuO2 square net structures accompanying two As3− ions, is sandwiched by (LaH)2 fluorite layers. Notably, strong metal–metal bonding with a distance of 2.80 Å was confirmed in La2Ti2As2H2.3, which has metallic properties. In fact, these compounds are situated near the boundary between salt‐like ionic hydrides and transition‐metal hydrides with metallic characters.  相似文献   

7.
For the calculation of the atomic or ionic volumes the Quantum Theory of Atoms In Molecules method was applied. The regions (basins) around the nuclei confined by the zero‐flux surfaces in the electron density gradient are called QTAIM atoms. They are non‐overlapping and completely fill the space. The volume of the basins gives volumes of atoms or ions. The integration of the electron density within the volumina yields effective charges, defining neutral or ionic character of the given QTAIM species. Present investigations refer to metal hydrides, metal nitrides and to intermetallic compounds of the system Al‐Pt. A linear relation between the ionic volumina of hydrogen or nitrogen established according to QTAIM and after Biltz has been found with (homodesmic) binary metal hydrides and binary metal nitrides, but has been observed merely as a trend with stronger deviations for heterodesmic compounds, such as ternary hydrido‐ and nitridometallates Aa[MmXx] (A – alkali or alkaline earth metal, M – transition metal and X – H or N). The deviation from linearity for heterodesmic compounds is caused by the different kinds of chemical bonds being present within the [MmXx] anions on the one hand and between the anions and the cations on the other hand reflected by the calculated volumes and the QTAIM charges of M and X components. Concerning the intermetallic compounds of the system Al‐Pt, the quantum chemical calculations reveal negative charges for the platinum atoms and positive ones for the aluminium atoms in accordance with their electronegativities. Introducing the variation of the atomic volume with the composition extends the Vegard's approach and gives a non‐linear slope for the concentration dependence of mean atomic volume which explains qualitatively the experimental results.  相似文献   

8.
Using a high pressure technique and the strong donating nature of H?, a new series of tetragonal La2Fe2Se2O3‐type layered mixed‐anion arsenides, Ln2M2As2Hx, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x≈3). In these compounds, an unusual M2H square net, which has anti CuO2 square net structures accompanying two As3? ions, is sandwiched by (LaH)2 fluorite layers. Notably, strong metal–metal bonding with a distance of 2.80 Å was confirmed in La2Ti2As2H2.3, which has metallic properties. In fact, these compounds are situated near the boundary between salt‐like ionic hydrides and transition‐metal hydrides with metallic characters.  相似文献   

9.
The crystal structures and redox properties of p‐benzoquinone (BQ)‐fused [18]crown‐6 1 and bis‐BQ‐fused [18]crown‐6 2 were examined. The anion radicals of these BQ molecules were stabilized by addition of metal ions, through effective electrostatic interactions between the negatively charged BQ moiety and positively charged ion‐capturing [18]crown‐6 unit. The electrostatic interactions and solvation energy played important roles in determining the magnitudes of anodic redox shifts in the reduction potentials. Regular π‐stacking of BQ units and regular arrays of [18]crown‐6 units were observed in crystal 2 , in which one‐dimensional π‐electron columns were separated by ionic channels. The hydroquinone‐fused [18]crown‐6 molecule 3 and a new BQ‐ and phenol‐fused [18]crown‐6 derivative 4 were obtained as single crystals. The molecular conformations of [18]crown‐6 in crystal 3 and hydrated crystal 3 ?H2O were different from each other.  相似文献   

10.
Complex aluminum hydrides have been widely studied as potential hydrogen storage materials but also,for some time now, for electrochemical applications. This review summarizes the crystal structures of alkali and alkaline earth aluminum hydrides and correlates structure properties with physical and chemical properties of the hydride compounds. The crystal structures of the alkali metal aluminum hydrides change significantly during the stepwise dehydrogenation. The general pathway follows a transformation of structures built of isolated [AlH4]~- tetrahedra to structures built of isolated [Al H6]~(3-) octahedra.The crystal structure relations in the group of alkaline earth metal aluminum hydrides are much more complicated than those of the alkali metal aluminum hydrides. The structures of the alkaline earth metal aluminum hydrides consist of isolated tetrahedra but the intermediate structures exhibit chains of cornershared octahedra. The coordination numbers within the alkali metal group increase with cation sizes which goes along with an increase of the decomposition temperatures of the primary hydrides. Alkaline earth metal hydrides have higher coordination numbers but decompose at slightly lower temperatures than their alkali metal counterparts. The decomposition pathways of alkaline metal aluminum hydrides have not been studied in all cases and require future research.  相似文献   

11.
The surface segregation of one component in binary transition metal alloys and the surface segregation of one hydrogen isotope in transition metal hydrides containing a mixture of hydrogen isotopes are discussed in the scope of the same thermodynamic model. The binary alloys are assumed to form a disordered substitutional alloy and the random distribution of hydrogen isotopes is assumed in the case of transition metal hydrides.  相似文献   

12.

The novel transition metal saccharinate complexes of triethanolamine (TEA) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Mn(II), Co(II), Ni(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes of [M(TEA)2](SAC)2, where SAC is the saccharinate ion, while the Cu(II) complex is dimeric. The TEA ligand acts as a tridentate N,O,O'-donor ligand and one ethanol group is not involved in coordination. The SAC ion does not coordinate to the metal ions and is present as the counter-ion in the Mn(II), Co(II), Ni(II), Zn(II), Cd(II) and Hg(II) complexes, but coordinates to the Cu(II) ion as a monodentate ligand. The crystal structures of the [Co(TEA)2](SAC)2 and [Cu2(μ-TEA)2(SAC)2]·2(CH3OH) complexes were determined by single crystal x-ray diffraction. The Co(II) ion has a distorted octahedral coordination by two TEA ligands. The Cu(II) complex crystallizes as a dimethanol solvate and has doubly alkoxo-bridged centrosymmetric dimeric molecules involving two tridentate triethanolaminate (deprotonated TEA) and two monodentate SAC ligands. The geometry of each Cu(II) ion is a distorted square pyramid. Both crystal structures are stabilized by hydrogen bonds to form a three-dimensional network.  相似文献   

13.
The crystal structure of Yb2RuD6 has been determined by neutron powder diffraction and the results were consistent with the Fm3m (#225) space group, a=7.2352(18) Å, with the atoms arranged according to the well-known K2PtCl6 structure. No structural phase transition was observed in going from room temperature to 4 K. Raman spectra were not available due to fluorescence, but all fundamental bands and combination bands were assigned from FTIR and PAIR spectra only following previous studies for other alkaline earth and europium ruthenium ternary metal hydrides and deuterides. The deuterium nuclear quadrupole coupling constant, 40.9 kHz, leads to an ionic character of the Ru-D bond of 82%.  相似文献   

14.
Intermolecular interactions between a prototypical transition metal hydride WH(CO)2NO(PH3)2 and a small proton donor H2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20–30% of the bond energy and to 30–40% of the bond enthalpy. An energy decomposition analysis reveals that the H?H bond of transition metal hydrides contains both covalent and electrostatic contributions.  相似文献   

15.
合成了两种过渡金属配合物[M(HPAA)(phen)2]HPAA.7H2O(M=Zn,1;Cu,2;HPAA-=对羟基苯乙酸根;phen=1,10-邻菲啰啉),并通过元素分析、红外光谱、热重分析对其进行表征,用单晶X-射线衍射方法测定了配合物的晶体结构。结构分析显示,两种配合物属于异质同晶型,不对称单元都是由1个金属离子,2个对羟基苯乙酸根离子,2个邻菲啰啉分子和7个游离的水分子组成的,其中有1个对羟基苯乙酸根离子未参与配位。每个金属离子的配位数为6,处于扭曲的八面体配位环境中。另外,用荧光光谱法研究了两种配合物与DNA之间的相互作用。  相似文献   

16.
The complexes of rare earth picrate with N, N, N′, N′-tetraphenyl-3, 6-dioxaoctanediamide (TDD), [Eu(pic)3(TDD)]-2CH3CN and [Y(pic)3(TDD)], have been synthesized. The crystal structures reveal that TDD acts as a tetradentate ligand, forming a ring-like coordination structure with its oxygen atoms together with one oxygen atom of the bidentate picrate. In the Eu (III) complex, the europium ion with a larger ionic radius lies out of the ring, while in the Y (III) complex, the yttrium ion with a smaller ionic radius enters the cavity of the ligand. The structures of the complexes are greatly affected by the ionic radii due to participation of the picrates in coordination. Project supported by the National Natural Science Foundation of China, the Doctoral Foundation of the State Education Commission of China, and the Climb Plan Foundation of the State Science and Technology Commission of China.  相似文献   

17.
Magnesium-based materials provide some of the highest capacities for solid-state hydrogen storage. However, efforts to improve their performance rely on a comprehensive understanding of thermodynamic and kinetic limitations at various stages of (de)hydrogenation. Part of the complexity arises from the fact that unlike interstitial metal hydrides that retain the same crystal structures of the underlying metals, MgH2 and other magnesium-based hydrides typically undergo dehydrogenation reactions that are coupled to a structural phase transformation. As a first step towards enabling molecular dynamics studies of thermodynamics, kinetics, and (de)hydrogenation mechanisms of Mg-based solid-state hydrogen storage materials with changing crystal structures, we have developed an analytical bond order potential for Mg−H systems. We demonstrate that our potential accurately reproduces property trends of a variety of elemental and compound configurations with different coordinations, including small clusters and bulk lattices. More importantly, we show that our potential captures the relevant (de)hydrogenation chemical reactions 2H (gas)→H2 (gas) and 2H (gas)+Mg (hcp)→MgH2 (rutile) within molecular dynamics simulations. This verifies that our potential correctly prescribes the lowest Gibbs free energies to the equilibrium H2 and MgH2 phases as compared to other configurations. It also indicates that our molecular dynamics methods can directly reveal atomic processes of (de)hydrogenation of the Mg−H systems.  相似文献   

18.
Formulae for hermitian operators representing covalent, ionic, and total bond indices are derived. The eigenstates of these operators come in pairs, and can be considered as bonding, anti-bonding and lone-pair orbitals. The form of these operators is derived by generalising the rule that the bond order be defined as the net number of bonding electron pairs. The percentage of covalency and ionicity of a chemical bond may be obtained, and bond indices can also be defined between groups of atoms. The calculation of the bond indices depends only on the electron density operator, and certain projection operators used to represent each atom in the molecule. Bond indices are presented for a series of first and second row hydrides and fluorides, hydrocarbons, a metal complex, a Diels–Alder reaction and a dissociative reaction. In general the agreement between the bond indices is in accord with chemical intuition. The bond indices are shown to be stable to basis set expansion.  相似文献   

19.
Acetylacetone (CH3COCH2COCH3 or Hacac) may give up a proton and chelate with a metal ion through the two oxygen atoms. The stability constant for the neutral complex (given as log βΣ) in aqueous solution can be calculated using the electrostatic relation log βΣ = NAVc2e2/(2.3RT?/d) when cations in S states are involved. Larger values that reflect exchange related electron correlation as well as electrostatic contributions to cohesive energy are obtained using transition metal ions. Separate values for the two energies are determined (see the text for definitions of the symbols).  相似文献   

20.
Density functional theory (DFT) calculations have been employed to investigate hydrosilylation of carbonyl compounds catalyzed by three high-valent molybdenum (VI) hydrides: Mo(NAr)H(Cp)(PMe3) (1A), Mo(NAr)H(PMe3)3 (1B), and Mo(NAr)H (Tp)(PMe3) (Tp?=?tris(pyrazolyl) borate) (1C). Three independent mechanisms have been explored. The first mechanism is “carbonyl insertion pathway”, in which the carbonyls insert into Mo?H bond to give a metal alkoxide complex. The second mechanism is the “ionic hydrosilylation pathway”, in which the carbonyls nucleophilically attacks η1-silane molybdenum adduct. The third mechanism is [2 + 2] addition mechanism which was proposed to be favorable for the high-valent di-oxo molybdenum complex MoO2Cl2 catalyzing the hydrosilylation. Our studies have identified the “carbonyl insertion pathway” to be the preferable pathway for three molybdenum hydrides catalyzing hydrosilylation of carbonyls. For Mo(NAr)H (Tp)(PMe3) (Tp?=?tris(pyrazolyl) borate), the proposed nonhydride mechanism experimentally is calculated to be more than 32.6?kcal/mol higher than the “carbonyl insertion pathway”. Our calculation results have derived meaningful mechanistic insights for the high-valent transition metal complexes catalyzing the reduction reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号