首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel surface ion imprinted adsorbent [Co(II)‐IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA‐15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X‐ray diffraction and nitrogen adsorption‐desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)‐IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo‐first‐order and pseudo‐second‐order kinetic models. It was found that the pseudo‐second‐order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin‐Radushke‐ vich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)‐IIP. Co(II)‐IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).  相似文献   

2.
The adsorption of Zn(II) in aqueous solutions on graphene oxide (GO) prepared from low‐purity of natural amorphous graphite has been studied in this work. The study was performed through the measurements of Zeta potential, atomic force microscope, Fourier transform infrared spectrum and X‐ray photoelectron spectroscopy. The results indicated that the adsorption followed the Langmuir model with the maximum Zn(II) adsorption capacity of 73 mg/g at pH 7.0. In addition, the adsorption was well described by the pseudo‐second‐order kinetics model. The mechanism of the Zn(II) adsorption on GO was mainly attributed to chemical adsorption through complexation reaction between Zn(II) and hydroxyl or carboxyl groups on the GO sheets, while the electrostatic interaction also contribute to the whole interaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A new Schiff‐base ligand having a potentially coordinating thioether group (2‐quinoline‐N‐(2′‐methylthiophenyl)methyleneimine, qmtpm ) has been prepared. The synthesis, structure, UV‐Vis and EPR studies of one copper(II) and two cobalt(II) complexes from this ligand is reported. The X‐ray structures of the CuII and CoII chlorido complexes 1 and 2 reveal the metal atoms in highly distorted square‐pyramidal environments constituted of one tridentate ligand and two anions. On the other hand, the thiocyanato CoII compound 3 exhibits a distorted trigonal‐bipyramidal structure. These structural variations are apparently due to the different counter‐ions which leads to distinct lattice interactions. The spectroscopic data obtained by EPR and UV‐Vis investigations are in agreement with the solid‐state structures of the coordination compounds.  相似文献   

4.
《先进技术聚合物》2018,29(2):961-969
In this work, porous chitosan (CS) was investigated as a biosorbent for the removal of iron (II) from the synthetic fracking wastewater. The underlying problem with the production water from fracking industries is that it contains iron (II) up to 55 mg/L, which needs to be eliminated. Porous CS had a specific surface area of 1.05 m2/g with the average pore diameter of 319 A, as determined by using Brunauer‐Emmett‐Teller surface area analysis. The kinetics, isotherms, and thermodynamic analysis confirm that the porous CS can be a potential candidate for iron (II) removal. Both the pseudo‐first‐order model and pseudo‐second‐order model have good fit on iron (II) adsorption with the porous CS. Kinetic studies revealed that the CS‐iron (II) adsorption system was controlled by intraparticle diffusion. The monolayer adsorption capacity of the porous CS from Langmuir model was found to be 51.81 mg/g. The experimental data were fitted against common adsorption isotherms and yielded excellent fits in the following order: Langmuir > Temkin > Freundlich > Dubinin‐Radushkevich isotherms. Thermodynamic studies revealed that the adsorption of iron (II) onto porous CS was feasible and spontaneous. The adsorption process is endothermic, and the entropy is the driving force.  相似文献   

5.
The adsorption capacity of conductive polyaniline doped by thiacalix[4]arene tetrasulfonate (PANI–TCAS) towards Cu(II), Cd(II), Co(II) and Cr(III) was investigated through batch adsorption techniques, and the extent of adsorption was measured as a function of pH, initial metal ion concentration and contact time. It was found that the metal ion removal reached maximum at pH 8.0 and remained constant after 60 min. Experimental data was fitted to Langmuir, Freundlich, Redlich–Peterson and Temkin equation models with the maximum adsorption capacity calculated to be 833.3, 555.5, 526.3 and 500 for Cr3+, Cu2+, Co2+ and Cd2+, respectively, from the Langmuir isotherm model. The kinetic study was carried out through pseudo‐first‐order, pseudo‐second‐order, Elovich kinetic and intraparticle diffusion models in which the related correlation coefficient for each kinetic model showed that the pseudo‐second‐order rate equation was better described by the adsorption process. XRD spectra, SEM and TEM images of the adsorbent revealed a homogeneous distribution of nano‐sized particle structure with a porous surface, the morphology of which brings about high adsorption capacity for the PANI–TCAS molecular nanocomposite which in turn was observed by the AFM micrograph. The conductivity of thiacalix[4]arene tetrasulfonate doped polyaniline after metal ion adsorption was also assessed, and the four‐probe measurement technique revealed conductivity increment as high as 102.4 S cm?1 with a 100 order of magnitude enhancement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The title compounds, hexa­aqua­cobalt(II) bis­(hypophosphite), [Co(H2O)6](H2­PO2)2, and hexa­aqua­cobalt(II)/nickel(II) bis(hypophosphite), [Co0.5Ni0.5(H2O)6](H2PO2)2, are shown to adopt the same structure as hexa­aqua­magnesium(II) bis­(hypophosphite). The packing of the Co(Ni) and P atoms is the same as in the structure of CaF2. The CoII(NiII) atoms have a pseudo‐face‐centred cubic cell, with a = b~ 10.3 Å, and the P atoms occupy the tetrahedral cavities. The central metal cation has a slightly distorted octahedral coordination sphere. The geometry of the hypophosphite anion in the structure is very close to ideal, with point symmetry mm2. Each O atom of the hypophosphite anion is hydrogen bonded to three water mol­ecules from different cation complexes, and each H atom of the hypophosphite anion is surrounded by three water mol­ecules from further different cation complexes.  相似文献   

7.
In this study, 2‐aminopyridine functionalized magnetite nanoparticles were chemically synthesized and used for removing Cd2+ ions from aqueous solutions. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis of X‐rays (EDX), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). The SEM results showed the synthesized magnetite nanoparticles have particle size around 26 nm. The effects of several variables including solution pH and volume, adsorbent mass, ionic strength and contact time on the Cd2+ adsorption were studied in batch experiments and finally the optimum conditions for adsorption were obtained. The kinetic data were investigated by pseudo‐ first‐order, pseudo‐ second‐order, intraparticle diffusion and Elovich kinetic models and data were described reasonably by pseudo‐ second‐order model (R2 = 0.9996) with qe = 2.31 mg g?1. Adsorption data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The results indicated that the data were well fitted to the Freundlich isotherm model (R2 = 0.9907). After study the possible interference effect of foreign ions on Cd2+ removal, the applicability of the proposed nanoparticles for adsorption from real samples confirmed the successfully removal of Cd2+ ions with removal efficiency higher than 92%. The obtained results showed that the synthesized nanoparticles as a reusable adsorbent can act as a good choice for Cd2+ removal with an easy procedure.  相似文献   

8.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

9.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

10.
Cerium(IV) antimonate was prepared by dropwise addition of 0.6M antimony pentachloride and 0.6M cerium ammonium nitrate solutions by a molar ratio of Ce/Sb 0.75. Exchange isotherms for H+/Co2+, H+/Cs+, H+/Zn2+, H+/Sr2+ and H+/Eu3+ were determined at 25, 40 and 60°C. Besides, it was proved that europium is physically adsorped, while zinc, strontium, cobalt and cesium are chemically adsorbed. Moreover, the heat of adsorption of zinc, strontium, cobalt and cesium on cerium (IV) antimonate was calculated and indicated that cerium(IV) antimonate is of endothermic behavior towards these ions. Also the distribution coefficients of these ions were determined and it was found that the selectivity is in the order: Eu3+>Sr2+>Cs+>Na+.  相似文献   

11.
Summary Complexes of the type M(AcLeu)2 · B2 (M = CoII, NiII or ZnII; B = H2O, py, 3-pic, 4-pic; AcLeu =N-acetyl-DL-leucinate ion) and M(AcLeu)2 B (M = CoII or ZnII and B = o-phen) were prepared and investigated by means of magnetic and spectroscopic measurements. The i.r. spectra of all the complexes are consistent with bidentate coordination of the amino acid to the metal ion. The room temperature solid state electronic spectra indicate that the symmetry of this species is closer toD 4h and that MO6 and MO4N2 chromophores are present in the M(AcLeu)2 · 2 H2O and M(AcLeu)2Bn · x H2O (B = py, 3-pic, 4-pic, n=2 and x=0 for M = NiII; B = o-phen, n=1 and x=0 for M = CoII; B = py, 3-pic, 4-pic, n=1 and x=1 for M = CoII) complexes, respectively. By comparing the Dq values of the amino acid and those of other N-substituted amino acids previously studied, a spectrochemical series of the the cobalt(II) and nickel(II) complexes is proposed. The1 H n.m.r. spectra of the zinc(II) complexes confirm the proposed stereochemistry.  相似文献   

12.
Two new binuclear cobalt(II) complexes, [Co2 L1 (μ2‐DPP)]2+ ( 1 ) (H L1 = N, N, N′, N′‐ tetrakis (2‐benzimidazolylmethyl)‐2‐hydroxyl ‐1,3‐diaminopropane; DPP = diphenylphosphinate) and [Co2 L2 (μ2‐BNPP)2]+ ( 2 ) (H L2 = 2,6‐bis‐[N,N‐di(2‐ pyridylmethyl)aminomethyl]‐4‐methylphenol, BNPP = bis(4‐nitrophenyl)phosphate) have been synthesized and their crystal structures and magnetic properties are shown. In 1 , each CoII atom has a distorted trigonal bipyramidal coordination sphere with a N3O2 donor set and the central two CoII atoms are bridged by one alkoxo‐O atom and one μ2‐DPP ion with the Co1‐Co2 separation of 3.542Å. In 2 , each CoII atom has a pseudo octahedral environment with a N3O3 donor set and the central two CoII atoms are bridged by a phenolic oxygen atom of L2 and two μ2‐BNPP ions with the Co1‐Co2 separation of 3.667Å. Susceptibility data of 1 and 2 indicate intramolecular antiferromagnetic coupling of the high‐spin CoII atoms.  相似文献   

13.
The crystal structure of the cobalt(II) carbonate‐based compound cobalt(II) dicarbonate trisodium chloride, Co(CO3)2Na3Cl, grown from a water–ethanol mixture, exhibits a three‐dimensional network of corner‐sharing {Co43‐CO3)4} tetrahedral building blocks, in which the CoII centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O–CO2)6 environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na+ and Cl ions. Antiferromagnetic coupling between adjacent CoII centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position , one Na atom on position 2 and a carbonate C atom on position 3.  相似文献   

14.
In this study, a novel organic–inorganic hybrid adsorbent for single‐step detection and removal of Pb(II) ions based on dithizone (DZ) anchored on mesoporous SBA‐15 was fabricated. The designed solid optical sensor revealed rapid colorimetric responses and high selectivity. Central composite design (CCD) combined with desirability function (DF) was applied to evaluate the interactive effects and optimization of important variables such as pH value, mesoporous SBA‐15 dosage, contact time and initial concentration of Pb(II) ions and optimum conditions for each of the factors were obtained 6.0, 25 mg, 30 min and 20 μg ml− 1, respectively. This adsorbent or solid optical chemo sensor exhibited a linear range of 1.0 to 100.0 μg ml−1 of Pb(II) ion concentration with a detection limit of 0.07 μg ml−1. This adsorbent was applied to determine and remove the Pb(II) in spiked samples. Various isotherm models such as Langmuir, Freundlich, Temkin and Dubinin–Radushkevich were studied for fitting the experimental equilibrium data. Langmuir model was chosen as an efficient model. Various kinetic models such as pseudo‐first, second order intraparticle, diffusion models were studied for analysis of experimental adsorption data and the pseudo second order model was chosen as an efficient model.  相似文献   

15.
A new dinuclear cobalt(II) complex [Co2L2Cl2(CH3OH)2] ( 1 ), where HL = 3‐[(furan‐2‐ylmethylimino)methyl]‐2‐hydroxy‐5‐methylbenzaldehyde, derived from the in situ condensation of 2,6‐diformyl‐4‐methylphenol with furfurylamine, was prepared and structurally and magnetically characterized. Single crystal X‐ray structural determination reveals that the structure consists of centrosymmetric dinuclear units with each CoII ion in a slightly distorted octahedral environment. Lines’ model, which in principle can theoretically separate in spin‐only and orbital contribution, was used to fit the variable temperature susceptibility (2–300 K), suggesting an intramolecular antiferromagnetic interaction between the cobalt(II) ions.  相似文献   

16.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

17.
Summary Several new complexes of the title ligand (H2MPTS) with CoII, NiII, CuII, and CdII have been prepared. Structural assignments of the complexes have been made based on elemental analysis, molar conductivity, magnetic moment and spectral (i.r.,1H n.m.r., reflectance) studies. The compounds are non-conductors in dimethylsulphoxide. The neutral molecule is coordinated to the metal(II) sulphate as a bidentate ligandvia the two carbonyl groups. The ligand reacts with the metal(II) chlorides with the liberation of two hydrogen ions, behaving as a bianionic quadridentate (NONO) donor. Enolization is confirmed by the pH-titration of H2 MPTS and its metal(II) complexes against NaOH. A distorted octahedral structure is proposed for the CuII complex, while a square planar structure is suggested for both CoII and NiII complexes. The stoichiometry of the complexes formed in EtOH and buffer solutions, their apparent formation constants and the ranges for obedience to Beer's law are reported for CoII, NiII and CuII ions. The ligand pK values are calculated. The antimicrobial activity of H2 MPTS and its CoII, NiII, CuII and MnII complexes is demonstrated.  相似文献   

18.
Summary Polymeric copper(II), nickel(II) and cobalt(II) complexes of the type M2L where M = CuII, NiII or CoII and H4L = disalicylaldimine oxamide (H4A), di(o-hydroxyacetophenoneimine)oxamide (H4B), disalicylaldimine succinamide (H4C) or di(o-hydroxyacetophenoneimine)succinamide (H4D), have been synthesized and characterized by analysis, i.r. and electronic spectra and magnetic moment data. Copper(II) complexes and some of the nickel(II) and cobalt(II) complexes are planar while other nickel(II) complexes are distorted octahedral and other cobalt(H) complexes are square pyramidal. Anomalously low magnetic moments of some complexes have been related to M-M interactionsvia oxo-bridge structures.  相似文献   

19.
The heteroleptic neutral tri‐tert‐butoxysilanethiolate of cobalt(II) incorporating ammonia as additional ligand ( 1 ) has been prepared by the reaction of a cobalt(II) ammine complex with tri‐tert‐butoxysilanethiol in water. Complex 1 , dissolved in hexane, undergoes oxidation in an ammonia saturated atmosphere to the ionic cobalt(III) compound 2 . Molecular and crystal structures of 1 and 2 have been determined by single crystal X‐ray structural analysis. 1 forms a dimeric molecule [Co{μ‐SSi(OBut)3}{SSi(OBut)3}(NH3)]2 with a folded central Co2S2 ring and distorted tetrahedral ligand arrangement at both CoII atoms (CoNS3 core). The product 2 is composed of the octahedral CoIII complex cation [Co{SSi(OBut)3}2(NH3)4]+ and the tri‐tert‐butoxysilanethiolate anion. Within the crystal two pairs of ions interact by hydrogen bonds forming well separated entities. 1 and 2 are the first structurally characterized cobalt thiolates where metal is also bonded to ammonia and 2 is the first cobalt(III) silanethiolate.  相似文献   

20.
The influence of small additives of cobalt(II) porphyrin (CoIIPn) on cross-linking radical polymerization of butane-1,4-diol dimethacrylate and its structural analog butane-1,4-diol diacrylate was studied. The kinetics of cross-linking radical polymerization of di(meth)acrylates in the absence and presence of CoIIPn and the diffusional sorption and physical mechanical properties of the resulting polymers were studied. Cobalt(II) porphyrin decreases substantially the polymerization rate and partially suppresses the gel effect. Diacrylate polymerization in the presence of CoIIPn proceeds with an induction period, whose value is determined by the content of CoIIPn. Cobalt(II) porphyrin modifies the structure and properties of the formed cross-linked polymers. In the case of dimethacrylate, this is caused by the catalytic chain transfer reaction, whereas for diacrylate the reason is the reversible inhibition reaction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 807–816, May, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号