首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films now are widely used in micro devices and structures, such as MEMS, electronic packaging, micro sensors, and so on. Their performances highly affect the reliability of the devices. Therefore, it is important to investigate the deformation and the failure mechanism of thin films. In this paper, we present two experimental methods to measure the mechanical properties of thin films. In the first method, a double-field-of-view electronic speckle pattern interferometry system (ESPI) and an integrated deformation and load measurement system are employed, which allows in situ and real-time measurements of full-field deformations of the thin films and microforces under uniaxial tensile test. In the second method, the array microindentation markers were indented on the surface of the thin film using a nanoindenter and the microregion deformations of the tested thin films were measured. In the proposed methods, the tested thin films can be made of metals, oxide ceramics, and multi-layer composites of thickness from several tens micrometers to less than a micron, and the tensile loads from 88 μN to 15 N for the first method or up to 100 N to the second one. The underlying principle of the methods and the experimental set-ups are presented. The deformations of Au and Au/Cr multi-layer films, and the pure Ni films are measured. The performance of the methods and the testing systems are also discussed.  相似文献   

2.
Laser patterning of thin films is essential for the future development of flexible electronic devices. The damage-free scribing of thermally sensitive thin films such as copper–indium–gallium diselenide (CIGS) that is required for solar module fabrication by integrated interconnections is still challenging. In this study a new approach for non-thermal, damage-free scribing of CIGS films on polyimide foil is proposed and demonstrated. In contrast to the usually used direct laser ablation of the thin-film stack, laser ablation of the polyimide carrier foil at laser fluences higher than 3 J/cm2 is utilized to achieve CIGS film delamination and thus the patterning of the thin film. The edges of the patterned CIGS films do not show typical laser-ablation-induced modifications like melting, debris contamination, or crack formation. The mechanism of the thin-film removal is of non-thermal origin and is probably due to stress formation at the CIGS/Mo interface resulting from secondary processes of polyimide laser ablation like shock-wave formation or local sample deformation.  相似文献   

3.
The development of devices made of micro- and nano-structured thin film materials has resulted in the need for advanced measurement techniques to characterize their mechanical properties. Photoacoustic techniques, which use pulsed laser irradiation to nondestructively induce very high frequency ultrasound in a test object via rapid thermal expansion, are suitable for nondestructive and non-contact evaluation of thin films. In this paper, we compare two photoacoustic techniques to characterize the mechanical parameters of edge-supported aluminum and silicon nitride double-layer thin films. The elastic properties and residual stresses in such films affect their mechanical performance. In a first set of experiments, a femtosecond transient pump–probe technique is used to investigate the Young’s moduli of the aluminum and silicon nitride layers by launching ultra-high frequency bulk acoustic waves in the films. The measured transient signals are compared with simulated transient thermoelastic signals in multi-layer structures, and the elastic moduli are determined. Independent pump–probe tests on silicon substrate-supported region and unsupported region are in good agreement. In a second set of experiments, dispersion curves of the A0 mode of the Lamb waves that propagate along the unsupported films are measured using a broadband photoacoustic guided-wave method. The residual stresses and flexural rigidities for the same set of double-layer membranes are determined from these dispersion curves. Comparisons of the results obtained by the two photoacoustic techniques are made and discussed.  相似文献   

4.
Mechanical stresses in microelectronics and micro‐electromechanical systems may influence the reliability of applications and devices. The origin of the stresses can be because of the joining of dissimilar materials with regard to the thermal expansion coefficient, electromigration or the deposition process utilized. Stresses can lead to delamination, crack formation and stress migration and therefore to a failure of the device. Identifying the locations of highest stresses in a device is crucial for reliability improvement. Currently, both Laue X‐ray micro diffraction and convergent‐beam electron diffraction are able to locally determine the stresses in thin metal films. Here, we propose a modified method of indirect Raman microspectroscopy to measure stresses with a lateral resolution in the submicrometer range at a laboratory scale. The method encompasses the crystallization of an amorphous silicon layer by local laser annealing and its subsequent usage as a strain gage. Stresses in an aluminum thin film were determined as a function of temperature. In addition to the average stress, the stress distribution could be monitored. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a theoretical analysis of the processes in thin solid films irradiated by short and ultrashort laser pulses in the regimes of film structuring and laser-induced forward transfer. The regimes are considered at which vaporization of the film materials is insignificant and film dynamics is governed mainly by mechanical processes. Thermoelastoplastic modeling has been performed for a model film in one- and two-dimensional geometries. A method has been proposed to estimate the height of microbumps produced by nanosecond laser irradiation of solid films. Contrary to femtosecond laser pulses, in nanosecond pulse regimes, stress waves across the film are weak and cannot induce film damage. The main role in laser-induced dynamics of irradiated films is played by radial thermal stresses which lead to the formation of a bending wave propagating along the film and drawing the film matter to the center of the irradiation spot. The bending wave dynamics depends on the hardness of the substrate underlying the film. The causes of the receiver substrate damage sometimes observed upon laser-induced forward transfer in the scheme of the direct contact between the film and the receiver are discussed.  相似文献   

6.
Direct selective metal deposition on semiconductors is of interest to electronic device technology, in particular for interconnects and Schottky devices. In this study, we investigate selective copper electrodeposition on patterned tantalum oxide thin films. Cyclic voltammetry studies show that thick tantalum oxide thin films have insulating properties while oxide films thinner than a critical value are semiconductors. Copper films electrodeposited on tantalum oxide thin films are known to form Schottky contacts. We demonstrate the formation of copper patterns on pre-patterned tantalum oxide films by a simple process: an insulating tantalum oxide film was grown electrochemically, the film was then mechanically scratched followed by mild oxidation to produce a thin tantalum oxide film inside the scratch. Based on the differential behavior of thin and thick tantalum oxide films, metal lines were electrodeposited selectively under formation of Schottky junctions. The process demonstrated in this paper is compatible to standard processes for semiconductor device fabrication while permitting flexible prototyping for research at small scales.  相似文献   

7.
周志东  张春祖  蒋泉 《中国物理 B》2011,20(10):107701-107701
The effects of internal stresses and depolarization fields on the properties of epitaxial ferroelectric perovskite thin films are discussed by employing the dynamic Ginzburg-Landau equation (DGLE). The numerical solution for BaTiO3 film shows that internal stress and the depolarization field have the most effects on ferroelectric properties such as polarization, Curie temperature and susceptibility. With the increase of the thickness of the film, the polarization of epitaxial ferroelectric thin film is enhanced rapidly under high internal compressively stress. With the thickness exceeding the critical thickness for dislocation formation, the polarization increases slowly and even weakens due to relaxed internal stresses and a weak electrical boundary condition. This indicates that the effects of mechanical and electrical boundary conditions both diminish for ferroelectric thick films. Consequently, our thermodynamic method is a full scale model that can predict the properties of ferroelectric perovskite films in a wide range of film thickness.  相似文献   

8.
The perturbation method for the analysis of thin, manifestly deformed films is given. The application of the method to the excitons in the film has shown that they have an effective mass essentially depending on the propagation direction. The effects of a mechanical deformation of the film were investigated. It was concluded that the film could serve as an emitter of infrared radiation if the mechanical deformation periodically changes in time.  相似文献   

9.

Fatigue impairs the reliability of macroscopic metallic components utilized in a variety of technological applications. However, the fatigue behaviour of thin metal films and small-scale components used in microelectronics and mechanical microdevices has yet to be explored in detail. The fatigue behaviour in submicrometre thin films is likely to differ from that in bulk material, since the volume necessary for the formation of dislocation structures typical of cyclic deformation in bulk material is larger than that available in thin films. The thin-film dimensions and microstructure, therefore, affect the microscopic processes responsible for fatigue. The fatigue behaviour of Cu films 0.4, 0.8 and 3.0 µm thick on polyimide substrates was investigated. The specimens were fatigued at a total strain amplitude of 0.5% using an electromechanical tensile-testing machine. This work focuses on the characterization of fatigue mechanisms and the resulting fatigue damage of thin Cu films. Extrusions similar to those observed in bulk material were found at the film surfaces after cyclic loading. Voids observed beneath the extrusions, close to the film-substrate interface, contributed significantly to thin-film failure. Thinner films were more fatigue resistant and contained fewer and smaller extrusions than thicker films did. A small thickness appears to inhibit void nucleation. This observation is explained in terms of vacancy diffusion and annihilation at free surfaces or grain boundaries. Transmission electron microscopy investigations confirmed that no long-range dislocation structures have developed during fatigue loading of the films investigated.  相似文献   

10.
Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.  相似文献   

11.
红荧烯具有导电性好、吸收系数高等优良的荧光特性和半导体特性,是目前报道的单晶迁移率最高的材料,在有机光电器件中有很好的发展前景,受到科研人员的广泛关注。目前国内外主要采用真空蒸镀方法和溶液加工方法制备红荧烯晶体薄膜,采用各种制备工艺来提高红荧烯薄膜质量。本文在系统介绍红荧烯晶体薄膜制备工艺研究进展的基础上,归纳总结了掺杂种类/聚合物浓度、后处理工艺/实验温度等对红荧烯晶体性能的影响,简要概述了红荧烯薄膜在有机光电子器件应用研究中所取得的研究成果,最后展望了基于红荧烯晶体薄膜的光电器件的发展趋势。  相似文献   

12.
热应力对非制冷红外焦平面微桥的影响及控制研究   总被引:4,自引:2,他引:2  
非制冷红外焦平面阵列的微桥结构在微加工工艺中,由于温度的剧烈变化,在薄膜中产生热应力而引起微桥的变形,将对器件产生不利影响.利用有限元分析方法,对微桥在热应力作用下产生的变形进行了分析,提出了两种控制热应变的途径:1)选择一种低热膨胀系数、低杨氏模量的电极材料;2)在电极材料的表面沉积一层SiNx薄膜.仿真结果表明,两...  相似文献   

13.
刘旭  王滨 《光学学报》1995,15(6):14-818
根据薄膜沉积过程等离子体对光学薄膜膜蒸气分子或原子的作用,建立低压等离子体离子镀设备,并对常规光学薄膜、如硫化物、氧化物薄膜以及多层膜器件进行了系统的研究,对所制备薄膜样品的透射光谱、吸收、散射以及膜层的聚集密度等进行了全面的测试分析。实验研究表明,低压等离子体离子镀可大大提高常规光学薄膜的光机性能。  相似文献   

14.
Residual stresses are found in the majority of multilayer thin film structures used in modem technology. The measurement and modeling of such stress fields and the elucidation of their effects on structural reliability and device operation have been a “growth area” in the literature, with contributions from authors in various scientific and engineering disciplines.

In this article the measurement of the residual stresses in thin film structures with X-ray diffraction techniques is reviewed and the interpretation of such data and their relationship to mechanical reliability concerns are discussed.  相似文献   


15.
Micro-hardness and scratch adhesion testing are the most commonly used techniques for assessing the mechanical properties of thin films. Both of these testing methods utilize single-point contact and induce plastic deformation in the substrate and film. However, the influence of adhesion on the measured hardness has been seldom reported so far. In our experiments, diamond-like carbon (DLC) and silicon carbide (SiC) films deposited on silicon and nickel-based alloy substrates by pulsed laser ablation were indented and scratched by a Vickers micro-hardness tester and a diamond-cutter, respectively. It was found that the composite hardness decreased more rapidly for poor adhesion when increasing the indentation load. The result was explained by the elastic-plastic deformation mode of indentation and helped us to understand the physical meaning of one parameter commonly introduced in the models used to separate film hardness from the composite hardness. Received 30 June 1998  相似文献   

16.
Optical second harmonic generation, mechanical stresses, and structure are investigated in thin polycrystalline zinc sulfide films. The resulting data indicate that there is no correlation between the mechanical stresses and the quadratic optical nonlinearity. In view of the X-ray diffraction results, the nature of the nonlinearity is explained using the model of a nanotextured film consisting of crystallites with the sphalerite or wurtzite structure. It is shown that this model allows satisfactory agreement between calculations and experiment.  相似文献   

17.
Zirconia thin films were deposited by OMCVD (organo-metallic chemical vapour deposition) at various temperatures and oxygen partial pressures on a AISI 301 stainless steel substrate with Zr(thd)4 as precursor. The as deposited 250 nm thin zirconia films presented a structure consisting of two phases: the expected monoclinic one and also an unexpected tetragonal phase. According to the literature, the stabilization of the tetragonal phase (metastable in massive zirconia) can be related to the crystallite size and/or to the generated internal compressive stresses.To analyze the effect of internal and external stresses on the thin film behaviour, in-situ tensile experiments were performed at room temperature and at high temperature (500 °C).Depending on the process parameters, phase transformations and damage evolution of the films were observed. Our results, associated to XRD (X-ray diffraction) analyses, used to determine phase ratios and residual stresses within the films, before and after the mechanical experiments, are discussed with respect to their microstructural changes.  相似文献   

18.
F. Wu  Y.T. Zhu  J. Narayan 《哲学杂志》2013,93(35):4355-4363
Here, we report the formation of twins and grain size dependence of twin density in nanocrystalline (NC) copper films fabricated by pulsed laser deposition. It is found that the percentage of grains containing twins decreases with decreasing grain size in the grain size range of 2–10?nm. Surprisingly, although the twins were formed during the deposition process without mechanical deformation, our analysis suggests that they are most likely deformation twins formed under high internal stress existing in the NC Cu films. This phenomenon may also happen in other NC metallic thin films where internal stresses are high.  相似文献   

19.
Nanoindentation studies are carried out on epitaxial ZnO and GaN thin films on (0 0 0 1) sapphire and silicon substrates, respectively. A single discontinuity (‘pop-in’) in the load-indentation depth curve is observed for ZnO and GaN films at a specific depths of 13-16 and 23-26 nm, respectively. The physical mechanism responsible for the ‘pop-in’ event in these epitaxial films may be due to the interaction behavior of the indenter tip with the pre-existing threading dislocations present in the films during mechanical deformation. It is observed that the ‘pop-in’ depth is dependent on lattice mismatch of the epitaxial thin film with the substrate, the higher the lattice mismatch the shallower the critical ‘pop-in’ depth.  相似文献   

20.
Mechanical properties of thin films on substrates can be evaluated directly through nanoindentation. For a comprehensive study, thin films should be characterized via Young’s modulus, yield stress and strain-hardening exponent at constant temperature. In this paper, we evaluate these effects of thin films on silicon substrate through finite element analysis. Thin films, from soft to hard relative to the silicon substrate, are investigated in three categories: soft films on hard substrates, soft to hard films on no elastic mismatch substrates, and hard films on soft substrates. In addition to examining the load-displacement curve, the normalized hardness versus normalized indentation depth is checked as well to characterize its substrate effect. We found that the intrinsic film hardness can be acquired with indentation depths of less than 12% and 20% of their film thickness for soft films on hard substrates and for soft to hard films on no elastic mismatch substrates, respectively. Nevertheless, nanoindentation of hard films on soft substrates cannot determine the intrinsic film hardness due to the fact that a soft substrate cannot support a hard film. By examining the von Mises stresses, we discovered a significant bending phenomenon in the hard film on the soft substrate. PACS 61.43.Bn; 62.20.-x; 68.03.Hj; 68.05.Cf; 68.08.De  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号