首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 9 毫秒
1.
A new strategy to achieve generalized chaos synchronization by GYC partial region stability theory is proposed. By using the GYC partial region stability theory the Lyapunov function is a simple linear homogeneous function of error states and the controllers are more simple and introduce less simulation error because they are in lower order than that of traditional controllers. In simulation examples, an inertial tachometer system and Mathieu-Van der Pol system are used.  相似文献   

2.
A new strategy to achieve chaos control by GYC partial region stability theory is proposed. By using the GYC partial region stability theory, the Lyapunov function is a simple linear homogeneous function of error states, the controllers are more simple and have less simulation error because they are in lower degree than that of traditional controllers. Simulation results for a new Ikeda–Lorenz system show the effectiveness of this strategy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a new strategy by using GYC partial region stability theory is proposed to achieve generalized chaos synchronization. via using the GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of states and the lower order controllers are much more simple and introduce less simulation error. Numerical simulations are given for new Mathieu–Van der Pol system and new Duffing–Van der Pol system to show the effectiveness of this strategy.  相似文献   

4.
An extended van der Pol system with bounded random parameter subjected to harmonic excitation is investigated by Chebyshev polynomial approximation. Firstly the stochastic extended van der Pol system is reduced into its equivalent deterministic one, solvable by suitable numerical methods. Then we explored nonlinear dynamical behavior about period-doubling bifurcation in stochastic system. Numerical simulations show that similar to the conventional period-doubling phenomenon in deterministic extended van der Pol system, stochastic period-doubling bifurcation may also occur in the stochastic extended van der Pol system. Besides, different from the deterministic case, in addition to the conventional bifurcation parameters, i.e. the amplitude and frequency of harmonic excitation, in the stochastic case the intensity of random parameter should also be taken as a new bifurcation parameter.  相似文献   

5.
In this paper, two kinds of synchronization schemes for a new hyperchaotic system are presented. Firstly, on the basis of stability criterion of linear system, synchronization is achieved with the help of the active control theory. Secondly, a nonlinear controller is designed according to Lyapunov stability theory to assure that synchronization can be achieved. Furthermore, an adaptive control approach for synchronization of uncertain hyperchaotic systems is proposed. Finally numerical simulations are provided to show the effectiveness and feasibility of the developed methods.  相似文献   

6.
We study in this paper the active control of a driven class of Van der Pol oscillator which exhibits three limit cycles. We begin by investigating the dynamics and stability analysis of the system under active control. We also analyze the effects of a time periodic perturbation included in the control process. In all these cases the domain of control gain parameters leading to a good control is obtained and verified numerically.  相似文献   

7.
8.
In this paper, we present some sufficient and necessary conditions for the absolute stability of time-delayed Lurie control systems, which improve the results we obtained before for the absolute stability of direct control, indirect control and critical control of Lurie systems. We also derived certain simple and easy applicable algebraic sufficient conditions for the absolute stability of time-delayed Lurie control systems, which provide a convenient tool for practical control engineers in designing absolutely stable systems or stabilizing nonlinear control systems.  相似文献   

9.
Absolute stability of Lurie control systems with multiple time-delays is studied in this paper. By using extended Lyapunov functionals, we avoid the use of the stability assumption on the main operator and derive improved stability criteria, which are strictly less conservative than the criteria in [2] and [3].  相似文献   

10.
11.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

12.
A novel type of control strategy combining the fractional calculus with terminal sliding mode control called fractional terminal sliding mode control is introduced for a class of dynamical systems subject to uncertainties. A fractional-order switching manifold is proposed and the corresponding control law is formulated based on the Lyapunov stability theory to guarantee the sliding condition. The proposed fractional-order terminal sliding mode controller ensures the finite time stability of the closed-loop system. Finally, numerical simulation results are presented and compared to illustrate the effectiveness of the proposed method.  相似文献   

13.
An optimal control problem of the Gourse type with delay is investigated. With a given aim functional, a necessary condition of optimality is formulated and proved in the form of a maximum principle. The proof is based on the reduction of a problem with delay to a problem without delay.The authors thank Prof. G. Leitmann, University of California, Berkeley, for discussions and for his interest in this paper.  相似文献   

14.
The problem of fixed-time stability of switched systems is studied. With the aid of the multiple Lyapunov function method, constraints on switching signals are derived under which global fixed-time stability of zero solutions of considered systems can be guaranteed. Sufficient conditions of fixed-time stability for Persidskii-type systems are obtained. The developed approaches are applied to the problem of the fixed-time deployment of mobile agents over a line segment under protocols with switched communication topology. Efficiency of the obtained results is demonstrated by a numerical simulation.  相似文献   

15.
A scheme to stabilize nonlinear time-varying systems with both matched and mismatched uncertainties is proposed in this paper by switching between two control laws: a first-order sliding-mode control and a second-order sliding-mode control. Based on this idea, a variable structure control algorithm is designed for a class of second-order systems. The closed-loop system is globally or locally asymptotically stable. It has been proven that the stability region has relation with the order of the boundary function and the region can be obtained by solving an inequality. The uncertainty considered in this work is also more general than those in the existing works.  相似文献   

16.
In this article, a novel four dimensional autonomous nonlinear systezm called hyperchaotic Rikitake system is proposed. Basic properties of the new system are investigated and the complex dynamical behaviors, such as time series, bifurcation diagram, and Lyapunov exponents are analyzed by dynamic analysis approaches. To control the new hyperchaotic system, the delayed feedback control is introduced. Regarding the time delay as a bifurcation parameter, stability and bifurcations with respect to time delay are investigated. Conditions assuring the existence of Hopf bifurcation and the distribution of roots to the associated characteristic equation are investigated by utilizing the polynomial theorem. Besides, the Hopf bifurcation is proved to occur when the bifurcation parameter (time delay) crosses through derived critical value. Finally, numerical simulations are provided to prove the consistence with the derived theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 180–193, 2016  相似文献   

17.
18.
This paper investigates the periodic solution of a delayed Beddington‐DeAngelis (BD) type predator‐prey model with discontinuous control strategy. Firstly, the regularity and visibility analysis of the delayed predator‐prey model is carried out by using the principle of differential inclusion. Secondly, the positiveness and boundeness of the solution is discussed by employing the comparison theorem. Based on the boundary conditions of the model and the Mawhin‐like coincidence theorem, it is shown that the solution of the delayed BD system is asymptotically stable in finite time. Furthermore, it is found that there exists at least one periodic solution of the nonautonomous delayed predator‐prey model by using the principle of topological degree and set value mapping. Specially, when the nonautonomous delayed BD system degenerates into an autonomous system, some criteria are obtained to guarantee the convergence behavior of the harvesting solutions for the corresponding autonomous delayed BD system. Finally, numerical examples are given to demonstrate the applicability and effectiveness of main results. It is worthy to point out that the discontinuous control strategy is superior to the continuous harvesting policies adopted in existing literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号