首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
基于矩阵分解和聚类提出一种协同过滤推荐算法. 先利用交替最小二乘(ALS)算法进行矩阵分解, 再利用改进的k-均值聚类算法弥补单一ALS算法在后期协同过滤阶段产生的大计算量问题, 解决了由于减小原始矩阵高维度、 高稀疏性带来的推荐准确度较低的问题, 极大提高了计算速度和推荐精度. 实验结果表明, 改进算法在推荐准确性上有明显提高.  相似文献   

2.
早期的协同过滤算法利用矩阵分解来解决数据稀疏问题,但是严重的稀疏问题导致矩阵分解的性能很难满足应用的需求.随后,迁移学习被引入到协同过滤的研究中,它主要利用辅助域和目标域的公共用户的各种信息来解决目标域的数据稀疏问题.虽然通过引入辅助域的信息能够帮助目标域获取更多的知识,但是在公共用户包含的公共商品项目少的情况下,只利用公共用户的浅层特征来度量用户的相似性,不能很好地捕捉用户的潜在特征,相似性度量效果不好.为此,本文提出了一种基于迁移的联合矩阵分解协同过滤模型,以公共用户为锚,将两个领域的用户和商品映射到一个潜在的语义空间.模型通过对两个领域的用户 商品评分矩阵在以公共用户信息作为约束项的情况下,进行联合矩阵分解,在实际基准数据集上的实验结果表明,本文所提出的方法明显优于现有基于相似度计算的迁移学习方法,也证明了模型的有效性.  相似文献   

3.
针对传统协同过滤推荐算法的数据稀疏以及用户关系衡量不准确的问题,提出了基于用户非对称相似关系的推荐算法.利用用户的潜在特征的样本数量,结合奇异值矩阵分解,计算用户之间非对称的相似度,明确用户间关系.仿真结果表明,随着邻居数量的增加,该算法的平均绝对误差始终优于传统算法,误差值在邻居数量为40~60之间值为最小,约为0.682,传统算法平均绝对误差值约为0.758,可以看出该算法判断用户关系较为准确,预测评分比传统算法更接近实际评分.  相似文献   

4.
持续指数增长的互联网逐渐带来了信息过载问题,使得推荐系统提供的信息过滤服务尤为重要. 协同过滤是推荐系统领域最为成功的技术,但依然存在数据稀疏性等问题. 社会关系信息能够有效提高推荐系统的预测准确性. 为解决数据稀疏性问题,本文提出了一种利用Logistic函数的社会化矩阵分解推荐算法. 在3组真实数据结合上的实验结果表明,本文提出的算法能够提供更准确的推荐结果,特别是在数据稀疏的情况下,显著缓解了数据稀疏性问题.   相似文献   

5.
为解决传统协同过滤算法在产生推荐时实时性较差性问题,提出了一种基于蚁群模糊聚类的协同过滤推荐算法.该算法将分两个步骤产生推荐.离线时,应用蚁群模糊聚类技术,对基本用户进行聚类;在线时,利用已有的用户蚁群聚类寻找目标用户的最近邻居,并产生推荐.实验表明,基于蚁群模糊聚类的协同过滤推荐算法能提高推荐产生的速度,即实时性得到...  相似文献   

6.
针对传统协同过滤推荐算法通常针对整个评分矩阵进行计算,存在效率不高的问题,提出一种基于K-medoids项目聚类的协同过滤推荐算法.该算法根据项目的类别属性对项目进行聚类,构建用户的偏好领域,使用用户偏好领域内的评分矩阵进行用户间相似度的计算,得到目标用户的最近邻居集,并生成推荐结果.与常用的K-means聚类方法相比,采用K-medoids方法对项目类别属性进行聚类,不仅克服了评分聚类可靠性不高的问题,而且算法还具有更好的鲁棒性.实验结果表明,该算法能有效提高推荐质量.  相似文献   

7.
基于非负矩阵分解的协同过滤模型在高维稀疏数据的预测和填补上十分有效,该模型具有推荐个性化、有效利用其他相似用户回馈信息的优点,但也存在预测精度较低等不足。针对用户或项目在不同情景下的评分差异性,提出了一种改进的基于潜在因子多样性的非负矩阵分解的协同过滤模型。该模型充分考虑在不同情境下,用户和项目潜在特征矩阵的多样性,在模型的训练中,采用了单元素非负乘法更新规则和交替方向法,保证了目标矩阵的非负性,且提高了模型的收敛率。在真实的工业数据集上的实验结果表明,相比于经典的非负矩阵分解模型,该模型的预测精度有了明显提高。  相似文献   

8.
现今的推荐算法大多忽略用户偏好和项目属性中的多个特征,而是在单一推荐准则的基础上训练模型进行推荐. 基于多准则的推荐算法通过考虑用户偏好的多个方面,可以为用户行为提供更加准确的预测. 酒店是旅游行业中重要的环节,为了提高旅客体验,实现酒店评分预测,提出了基于矩阵分解与随机森林的多准则推荐算法. 该算法分两步实现,通过矩阵分解训练得出用户对物品在各个准则上的评分特征,然后随机森林学习评分特征预测最终评分. 实验结果显示,相较传统算法,基于矩阵分解与随机森林的多准则推荐算法的准确性和实用价值更高.  相似文献   

9.
基于兴趣度的聚类协同过滤推荐系统的设计   总被引:1,自引:0,他引:1  
协同过滤技术被成功地应用于个性化推荐系统中.随着用户数目和网页数目的日益增加,整个用户矩阵数据极端稀疏并且实时性效果不理想.传统的推荐方法解决不了这些问题.本文结合兴趣度和聚类技术对客户的个人兴趣进行评价,提出了基于兴趣度的聚类协同过滤推荐系统,实验表明,该算法能够有效避免传统方法带来的弊端,提高系统的推荐质量.  相似文献   

10.
基于随机游走和聚类平滑的协同过滤推荐算法   总被引:1,自引:0,他引:1  
协同过滤是电子商务推荐系统中被广泛采用的技术,然而数据稀疏性会影响协同过滤的推荐质量.本文针对数据稀疏问题提出一种基于随机游走和聚类平滑的两阶段协同过滤推荐算法.离线阶段:计算项目间相关性,提出了一个新的方法即通过加权累加各步转移概率对项目间相关性进行描述.根据得到的项目相关性矩阵对项目聚类,利用聚类信息对未评分数据进...  相似文献   

11.
针对当前大数据背景下推荐系统中所存在推荐效率低下、扩展性差、推荐质量不高等问题,本文提出一种基于Bregman联合聚类与加权矩阵分解的融合推荐算法(CO-CWMA)。首先,通过Bregman联合聚类挖掘出多样、不同层次的低秩评分子矩阵,组合不同约束与距离的聚类结果训练得到子模型,进而在各个模型的子矩阵上并发地进行矩阵分解,最后将各个子模型进行均值融合,提高推荐质量、效率与扩展性。在矩阵分解阶段采用SVD++算法,基于每个子矩阵中的评分分布计算加权策略,给予高频评分较大权值,在梯度下降阶段利用学习率函数控制学习率的更新。实验结果表明,该算法与三种基线算法相比在均方根误差(RMSE)与平均绝对误差(MAE)上均有明显降低,即推荐质量有较大提升。  相似文献   

12.
现有好友推荐方法只利用用户关系或内容信息进行推荐,难以获得较好的推荐质量. 针对该问题,在利用非负矩阵分解模型适合数据聚类以及数据约简的基础上,提出一种基于非负矩阵分解的好友推荐方法:FRNMF. 该方法采用基于非负矩阵分解的用户聚类为核心的好友推荐框架,利用用户好友关系网络信息和内容信息分别进行用户聚类,然后基于聚类结果计算用户间的综合相似度并进行好友推荐;不仅可以综合集成利用用户关系和内容两类信息,而且具有线性时间复杂度,还可以解决数据稀疏引起的推荐质量下降问题. 实验开发了FRNMF的原型系统,并在真实的新浪微博和学者网社交网络数据集进行对比实验,结果表明FRNMF比传统的好友推荐方法具有更好的推荐质量. 此外,对用户关系和内容两类信息的权重参数设置进行实验分析,分析表明适当提高用户关系信息的权重对于提高好友推荐质量具有促进作用.  相似文献   

13.
Matrix factorization(MF) has been proved to be a very effective technique for collaborative filtering(CF),and hence has been widely adopted in today's recommender systems.Yet due to its lack of consideration of the users' and items' local structures,the recommendation accuracy is not fully satisfied.By taking the trusts among users' and between items' effect on rating information into consideration,trust-aware recommendation systems(TARS) made a relatively good performance.In this paper,a method of incorporating trust into MF was proposed by building user-based and item-based implicit trust network under different contexts and implementing two implicit trust-based context-aware MF(ITMF)models.Experimental results proved the effectiveness of the methods.  相似文献   

14.
在基于协同过滤的推荐系统中,因式分解机模型是基于矩阵分解的一般化模型,不需要特定支持向量,可直接应用于回归和分类中,并能更准确地处理稀疏矩阵.通过对其进行改进,在不提高时间复杂度的同时考虑上下文环境,并对上下文进行层次化处理.通过两组真实数据集,在不同的指标下进行实验.最后证实改进后的模型,在准确率和学习速率上优于原有模型.  相似文献   

15.
提出了一种基于局部非负矩阵分解的人脸识别方法,以单个人的训练样本集获取其人脸特征子空间,将识别图像向每一个特征子空间中进行映射及重构,在子空间内实现人脸识别。ORL标准人脸库进行的计算机仿真证实了该方法的有效性。  相似文献   

16.
针对协同过滤算法中用户反馈数据的稀疏性问题,提出一种基于知识库的协同矩阵分解方法.该方法从物品的知识图谱中学习其向量表示,并在此基础上联合地分解反馈矩阵和物品关联度矩阵,两种矩阵共享物品向量,利用物品的语义信息弥补反馈数据的缺失.实验结果表明,该方法显著地提升了矩阵分解模型的推荐效果,在一定程度上解决了协同过滤的冷启动问题.   相似文献   

17.
虽然基于局部的表示方法在图像处理中具有很好的鲁棒性,但非负矩阵分解只有隐式局部约束,导致分解不唯一和基图像不够局部.另外,局部性与判别性作为样本表示的重要性质几乎没有在非负矩阵分解中被同时考虑过.为此,文中提出了基于大间隔编码的空间非负矩阵分解,将图像数据看作像素构成的二维网络,借鉴网络中的知识将空间信息嵌入基图像,不但施加了显式的局部约束,而且能够弥补数据向量化损失的空间信息.同时,利用大间隔约束学到的额外一维空间平衡重建误差和判别性约束对基图像的影响.在AR数据库和扩展的Yale B数据库上的人脸识别实验结果表明,相比于非负矩阵及其他几种典型的扩展方法,基于大间隔编码的空间非负矩阵分解更加鲁棒.  相似文献   

18.
矩阵三角分解的递归算法   总被引:1,自引:0,他引:1  
将递归方法引入稠密线性代数的计算,能产生自动的矩阵分块,使算法适合于当今分级存储高性能计算机的结构,提高运算速度。文章对求解线性代数方程组的矩阵三角分解递归算法进行了研究,给出了算法的详细推导过程。  相似文献   

19.
潘伟  胡春安 《科学技术与工程》2021,21(11):4519-4523
针对已有协同过滤推荐技术中评分矩阵极度稀疏问题,提出了一种基于低秩矩阵填充技术的推荐算法.该算法从贝叶斯框架出发,提出了能够解决低秩矩阵问题的分层高斯先验模型,并将广义近似消息传递算法嵌入到贝叶斯框架,规避了贝叶斯学习过程中烦琐的矩阵逆运算,提升了算法运算速度,同时在广义近似消息传递算法中施加阻尼运算以促进收敛.在开放...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号