首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
原子个数n对碳分子线Cn(n=3~10)基态结构特性的影响   总被引:3,自引:0,他引:3  
利用密度泛函B3LYP方法, 在6-311++g**基组水平上对碳分子线Cn(n=3~10)体系的基态电子结构特性等作了理论计算. 计算结果表明, 当n为奇数时, 碳分子线Cn基态都为单重态, 反之, 当n为偶数时, 三重态为其稳定的基态. 同时在得到碳分子线基态构型的基础上, 对其极化率、电荷分布和能级分布进行了研究, 确定了碳分子线体系最高占据轨道HOMO能量EH, 最低未占据轨道LUMO能量EL与n的关系式, 即EHn-2 < EHn < EHn+2, ELn-2 > ELn > ELn+2. 因而碳分子线Cn(n=3~10)体系的费米能级会表现出特有的奇偶振荡, 本文也对该现象出现的原因进行了讨论.  相似文献   

2.
应用密度泛函理论,在B3LYP/6-31G水平上优化了线性簇合物SC2nS2-(n=1~12)的基态平衡几何结构,并计算了它们的谐振动频率.在基态平衡构型下,通过TD-B3LYP/cc-pvTZ和TD-B3LYP/cc-pvDZ计算,确定了簇合物SC2nS2-(n=1~10)X1Σ g→11Σ u电子跃迁的垂直激发能和对应的振子强度.基于计算结果,导出了X1Σ g→11Σ u电子跃迁吸收波长与体系大小n的解析关系式,以及SC2nS2-体系第一电离能与体系大小n的解析表达式,并讨论了不同端位原子对碳链体系激发态性质的影响.  相似文献   

3.
采用低温固相合成法制备了3种有机/无机杂合物(CnH2n+1NH3)2NiCl4(n=4,8,12),通过元素分析、X射线粉末衍射、红外光谱和紫外-可见吸收光谱对杂合物进行了表征.实验结果表明,利用低温固相合成法可成功制备杂合物(CnH2n+1NH3)2NiCl4(n=4,8,12),3种产物均具有明显的层状结构且分别属于单斜晶系、六方晶系和正交晶系.  相似文献   

4.
线性簇合物SC2nS2-(n =1~12)电子吸收光谱   总被引:2,自引:0,他引:2  
应用密度泛函理论,在B3LYP/6-31G*水平上优化了线性簇合物SC2nS2-(n =1~12)的基态平衡几何结构,并计算了它们的谐振动频率.在基态平衡构型下,通过TD-B3LYP/cc-pvTZ和TD-B3LYP/cc-pvDZ计算,确定了簇合物SC2nS2-(n =1~10) 电子跃迁的垂直激发能和对应的振子强度.基于计算结果,导出了电子跃迁吸收波长与体系大小n的解析关系式,以及SC2nS2-体系第一电离能与体系大小n的解析表达式,并讨论了不同端位原子对碳链体系激发态性质的影响.  相似文献   

5.
采用B3LYP方法在LanL2DZ水平上计算了六聚同多阴离子 (M6On-19,M =Mo和W ,n =2 ;M =Nb和Ta ,n =8)的电子结构 ,分析了它们的前线轨道、分子静电势 (MEP) .计算结果表明 ,Nb6O8-19和Ta6O8-19是电子给体 ,而Mo6O2 -19和W6O2 -19则是电子受体 ,这与它们在溶液中具有不同的化学性质是一致的  相似文献   

6.
用HF自洽场理论和密度泛函理论(DFT)的B3LYP方法,在6 31G水平上研究了低聚物(Cl2AlNH2)n和(H2AlNH2)n(n=1~5)簇的几何构型、电子结构和聚合反应热力学性质,比较了两个系列化合物中化学键的强度.结果表明,Cl2AlNH2和H2AlNH2分子为C2 (EC)平面型结构,其中Al-N为由一个σ键和一个键组成的双键.(Cl2AlNH2)n和(H2AlNH2)n(n=1~5)分子为Dnh对称,Al-N是典型的σ单键 .低聚物(Cl2AlNH2)n和(H2AlNH2)n的稳定性顺序分别为: 3 > 2 > 4> 5 > 1和8 > 7 > 9 > 11 > 6.  相似文献   

7.
笼状硼氢化合物BnHn2-、CBn-1Hn-和C2Bn-2Hn(n=5~12)含n个顶点和(n+1)对骨架电子,具有典型的三维芳香性、高的芳香化能和类似于苯的化学反应性.2005年以来,在研究B-O二元团簇的过程中,我们首次提出硼的硼羰基化合物(boron boronyls)和碳的硼羰基化合物(carbon boronyls)的概念,探讨了Bn(BO)m0/-1/-2(n=1~2,m=2~4)及Cn(BO)n(n=3~7)系列化合物的几何结构和电子性质.基于高分辨光电子能谱实验和密度泛函理论分析,确认线性B(BO)20/-1及三角形B(BO)30/-1新颖结构,首次发现线性D∞h B2(BO)22-离子含有B≡B三重键.理论和实验结合研究表明,BO与H具有等瓣相似性,BO自由基具有类似于CN的化学行为.在此基础上,本文用BO基团取代BnHn2-、CBn-1Hn-及C2Bn-2Hn(n=5~12)中的H原子,形成Bn(BO)n2-、CBn-1(BO)n-及C2Bn-2(BO)n(n=5~12)系列硼氧化物,对其几何和电子结构、稳定性和芳香性进行密度泛函B3LYP/6-311+G(3df)理论研究.图1给出n=1...  相似文献   

8.
电子动量谱学自本世纪六十年代[1]以来,已发展成为探测原子分子的电子结构的强有力工具.借助电子动量谱学可获得精确的分子轨道电子密度分布,并能提供非常详细的电子运动和电子关联信息.有关这方面的理论和实验技术的详细综述可参考文献[2].到目前为止,运用光电子谱学方法,已对饱和烷烃的价壳层结合能谱进行了广泛的研究[3],但是用(e,2e)技术仅测量了甲烷[4,5]、乙烷[6]、丙烷[7]、丁烷[8]的价轨道电子动量分布.本文简要报导利用高分辨率(e,2e)谱仪获得的异丁烷分子的结合能谱和动量分布的实验…  相似文献   

9.
采用密度泛函理论(DFT)的B3LYP泛函, 在6-311G*水平上对B2Cn+(n=1~9)团簇的几何构型和电子结构进行了优化和振动频率计算. 结果表明, 在B2Cn+(n=1~9)团簇的基态构型中, B2C2+、B2C3+为具有D∞h对称性的线形结构, B2C7+为具有Cs对称性的立体环状结构, 其余均为平面构型; 其成键顺序为C—C成键优于B—C 成键, B—C成键优于B—B成键. 进一步得到了B2Cn+(n=1~9)团簇的总能量(ET)、零点能(EZ)、摩尔热容(Cp)、标准熵(S0)以及原子化能(ΔEn+). 其结果显示, 随着n的递增, ET、EZ、Cp、S0和ΔEn+数值均呈现增大趋势, 其中EZ数值呈现近似等梯度的增加趋势. 通过对B2Cn+(n=1~9)团簇基态结构的垂直电子亲合势的研究发现, n为奇数的B2Cn+团簇比n为偶数的稳定.  相似文献   

10.
采用B3LYP方法在Lanl2DZ水平上计算了六聚同多阴离子(M6On19^-(M=Mo和W,n=2;M=Nb和Ta,n=8)的电子结构,分析了它们的前线轨道、分子静电势(MEP).计算结果表明,Nb6O19^8-和Ta6O19^8-是电子给体,而Nb6O19^2-和Ta6O19^2-则是电子受体,这与它们在溶液中具有不同的化学性质是一致的.  相似文献   

11.
Electron momentum distributions for outer valence orbitals of CF2Cl2 have been obtained by (e,2e) electron momentum spectroscopy at an incident energy of 1200 eV + binding energy. The experimental electron momentum profiles are compared with Hartree-Fock and density functional theory (DFT) calculations using B3LYP hybrid functional with the 6-31G and 6-311+G* basis sets. Generally, the shapes of the experimental momentum profiles are well reproduced by DFT calculations using larger basis sets 6-311 + G*. An attempt has been made to clarify the ordering of the outer valence orbitals, which have been in controversy, by comparing experimental results with B3LYP/6-311 + G* calculations.  相似文献   

12.
The most populated structure of tetrahydrofuran (THF) has been investigated in our previous study using electron momentum spectroscopy (EMS). Because of the relatively low impact energy (600 eV) and low energy resolution (DeltaE = 1.20 eV) in the previous experiment, only the highest occupied molecular orbital (HOMO) of THF was investigated. The present study reports the most recent high-resolution EMS of THF in the valence space for the first time. The binding energy spectra of THF are measured at 1200 and 2400 eV plus the binding energies, respectively, for a series of azimuthal angles. The experimentally obtained binding energy spectra and orbital momentum distributions (MDs) are employed to study the orbital responses of the pseudorotation motion of THF. The outer valence Greens function (OVGF), the OVGF/6-311++G** model, and density function theory (DFT)-based SAOP/et-pVQZ model are employed to simulate the binding energy spectra. The orbital momentum distributions (MDs) are produced using the DFT-based B3LYP/aug-cc-pVTZ model, incorporating thermodynamic population analysis. Good agreement between theory and experiment is achieved. Orbital MDs of valence orbitals exhibit only slight differences with respect to the impact energies at 1200 and 2400 eV, indicating validation of the plane wave impulse approximation (PWIA). The present study has further discovered that the orbital MDs of the HOMO in the low-momentum region (p < 0.70 a.u) change significantly with the pseudorotation angle, phi, giving a v-shaped cross section, whereas the innermost valence orbital of THF does not vary with pseudorotation, revealing a very different bonding mechanism from the HOMO. The present study explores an innovative approach to study pseudorotation of sugar puckering, which sheds a light to study other biological systems with low energy barriers among ring-puckering conformations.  相似文献   

13.
Results of an exhaustive experimental study of the valence electronic structure of thiophene using high resolution electron momentum spectroscopy at impact energies of 1200 and 2400 eV are presented. The measurements were performed using an electron momentum spectrometer of the third generation at Tsinghua University, which enables energy, polar and azimuthal angular resolutions of the order of DeltaE = 0.8 eV, Deltatheta = +/-0.53 degrees and Deltaphi = +/-0.84 degrees . These measurements were interpreted by comparison with Green's function calculations of one-electron and shake-up ionization energies as well as of the related Dyson orbital electron momentum distributions, using the so-called third-order algebraic diagrammatic construction scheme (ADC(3)). Comparison of spherically averaged theoretical electron momentum distributions with experimental results very convincingly confirms the presence of two rather intense pi-2 pi*+1 shake-up lines at electron binding energies of 13.8 and 15.5 eV, with pole strengths equal to 0.18 and 0.13, respectively. Analysis of the electron momentum distributions associated with the two lowest 2A2 (pi3-1) and 2B1 (pi2-1) cationic states provides indirect evidence for a symmetry lowering and nuclear dynamical effects due to vibronic coupling interactions between these two states. ADC(3) Dyson orbital momentum distributions are systematically compared with distributions derived from Kohn-Sham (B3LYP) orbitals, and found to provide most generally superior insights into experiment.  相似文献   

14.
Molecular orbital signatures of the methyl substituent in L-alanine have been identified with respect to those of glycine from information obtained in coordinate and momentum space, using dual space analysis. Electronic structural information in coordinate space is obtained using ab initio (MP2/TZVP) and density functional theory (B3LYP/TZVP) methods, from which the Dyson orbitals are simulated based on the plane wave impulse approximation into momentum space. In comparison to glycine, relaxation in geometry and valence orbitals in L-alanine is found as a result of the attachment of the methyl group. Five orbitals rather than four orbitals are identified as methyl signatures. That is, orbital 6a in the core shell, orbitals 11a and 12a in the inner valence shell, and orbitals 19a and 20a in the outer valence shell. In the inner valence shell, the attachment of methyl to glycine causes a splitting of its orbital 10a' into orbitals 11a and 12a of L-alanine, whereas in the outer valence shell the methyl group results in an insertion of an additional orbital pair of 19a and 20a. The frontier molecular orbitals, 24a and 23a, are found without any significant role in the methylation of glycine.  相似文献   

15.
The pseudorotation of tetrahydrofuran (THF) (C(4)H(8)O) has been studied using density functional theory, with respect to the valence orbital responses to the ionization potentials and to orbital electron and momentum distributions. Three conformations of THF, the global minimum structure C(s), local minimum structure C(2), and a transition state structure C(1), which are characteristic configurations on the potential energy surface, are examined using the SAOP/et-pVQZ//B3LYP/6-311++G** models with the aforementioned dual space analysis. It is noted in the ionization energy spectra that the minimum structures C(s) and C(2) are not directly connected by pseudorotation, but through the transition state structure C(1). As a result, some orbitals of the C(s) conformer are able to "correlate" to orbitals of the C(2) conformer without a strict symmetry constraint, i.e., orbital 7a' of the C(s) conformer is correlated to orbital 5b of the C(2) conformer. It is also noted that although the valence orbital ionization potentials are not significantly altered by the pseudorotation of THF, their spectra (mainly due to excitation) are quite different indeed. Detailed orbital analysis based on dual space analysis is given. The valence orbital behavior of the conformations is orbital dependent. It can be approximately divided into three groups: the "signature group" is associated with orbitals experiencing significant changes. The frontier orbitals are in this group. The "nearly identical group" includes orbitals without apparent changes across the conformations. Most of the orbitals showing a certain degree of distortion during the pseudorotation process belong to the third group. The present study demonstrates that a comprehensive understanding of the pseudorotation of THF and its dynamics requires multidimensional information and that the information gained from momentum space is complementary to that from the more familiar coordinate space.  相似文献   

16.
The binding energy spectra and electron momentum distributions for the outer valence molecular orbitals of gaseous 2-fluoroethanol have been measured by the non-coplanar asymmetric (e, 2e) spectrometer at impact energy of 2.5 keV plus binding energy. The quantitative calculations of the ionization energies and the relevant molecular orbitals have been carried out by using the outer-valence Green’s function method and the density functional theory with B3LYP hybrid functional. The observed ionization bands in binding energy spectra, as well as the previous photoelectron spectrum which was not assigned, have been assigned for the first time through the comparison between experiment and theory. In general, the theoretical electron momentum distributions calculated by B3LYP method with aug-cc-pVTZbasis set are in line with the experimental ones when taking into account the Boltzmannweighted thermo-statistical abundances of five conformers of 2-fluoroethanol.  相似文献   

17.
A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.  相似文献   

18.
Core molecular orbital contribution to the electronic structure of N2O isomers has been studied using quantum mechanical density functional theory combined with a plane wave impulse approximation method. Momentum distributions of wave functions for inner shell molecular orbitals of the linear NNO, cyclic and linear NON isomers of N2O are calculated through the (e, 2e) differential cross sections in momentum space. This is possible because this momentum distribution is directly proportional to the modulus squared of the momentum space wave function for the molecular orbital in question. While the momentum distributions of the NNO and cyclic N2O isomers demonstrate strong atomic orbital characteristics in their core space, the outer core molecular orbitals of the linear NON isomer exhibit configuration interactions between them and the valence molecular orbitals. It is suggested that the frozen core approximation breaks down in the prediction of the electronic structure of such an isomer. Core molecular orbital contributions to the electronic structure can alter the order of total energies of the isomers and lead to incorrect conclusions of the stability among the isomers. As a result, full electron calculations should be employed in the study of N2O isomerization.  相似文献   

19.
The valence-shell binding energy spectra (8–44 eV) and molecular orbital momentum distributions of OCS have been studied by non-coplanar symmetric binary (e,2e) spectroscopy. Existing theoretical binding energy spectra calculated using the many-body 2ph-TDA Green's function (GF) method and using the symmetry-adapted cluster (SAC) on method are compared with the experiment. Intense many-body structure in the measured and calculated binding energy spectra indicates the general breakdown of the independent particle ionization picture. Experimental momentum distributions are compared with those calculated using ab initio SCF wavefunctions of minimal basis set quality and of near Hartree—Fock quality. Excellent agreement between the experimental momentum distributions and those calculated by the near Hartree—Fock wavefunction is obtained for the three innermost valence orbitals: 8σ, 7σ and 6σ. The correct order of the close lying outer-valence 2π and 9σ orbitals is unambiguously identified from the shapes of the measured momentum distributions. Momentum and position contour density maps computed from theoretical wavefunctions of near Hartree—Fock quality are used to interpret the shapes and atomic characters of the observed momentum distributions. The momentum densities of the outermost-valence antibonding π orbitals and of the outermost-valence bonding σ orbitals of the linear triatomic group: CO2, CS2 and OCS are compared respectively with each other. The associated chemical trends are discussed within the existing framework of momentum-space chemical principles.  相似文献   

20.
The electron binding energy spectra and momentum profiles of the valence orbitals of difluoromethane, also known as HFC32 (HFC-hydrofluorocarbon) (CH(2)F(2)), have been studied by using a high resolution (e,2e) electron momentum spectrometer, at an impact energy of 1200 eV plus the binding energy, and by using symmetric noncoplanar kinematics. The experimental momentum profiles of the outer valence orbitals and 4a(1) inner valence orbital are compared with the theoretical momentum distributions calculated using Hartree-Fock and density functional theory (DFT) methods with various basis sets. In general, the shapes of the experimental momentum distributions are well described by both the Hartree-Fock and DFT calculations when large and diffuse basis sets are used. However, the result also shows that it is hard to choose the different calculations for some orbitals, including the methods and the size of the basis sets employed. The pole strength of the ionization peak from the 4a(1) inner valence orbital is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号