首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracluster proton transfer from the matrix-assisted laser desorption/ionization matrix 2,5-dihydroxybenzoic acid (DHB) to the peptide valyl-prolyl-leucine has been investigated as a function of excitation laser wavelength and power. Ionization laser power studies at 308 nm indicate that cluster ionization occurs with a two-photon dependence, whereas matrix-to-analyte proton transfer and cluster dissociation requires an additional photon. At 266 nm, two-photon absorption leads to both cluster ionization and cluster dissociation/proton transfer. A consideration of these results clearly indicates that analyte protonation occurs following ionization of the cluster to produce a radical cation matrix/analyte cluster. Mass spectral features also indicate that mixed DHB/peptide cluster ionization can occur via two-photon ionization at wavelengths as long as 355 nm. These results suggest a reduction in the ionization potential of larger mixed DHB/peptide clusters of greater than 1 eV. The reduced ionization potential seen in these clusters suggests that radical cation initiated proton transfer remains a viable mechanism for analyte protonation in matrix-assisted laser desorption/ionization at these longer wavelengths.  相似文献   

2.
The development of molecular spectroscopy has enabled us to select chlorinated aromatic hydrocarbons very rapidly. In particular, the laser ionization TOFMS (time-of-flight mass spectrometry) method is expected to be useful as an on-line, selective, and sensitive method. In the present work, real-time laser ionization TOFMS measurements were carried out on gaseous chlorinated aromatic hydrocarbons. The laser ionization method used resonance-enhanced two-photon ionization with the direct introduction of gas into the vacuum chamber. This method for analyzing aromatic hydrocarbons was developed using a pulsed supersonic molecular beam method. In the context of developing a highly selective and sensitive method, excitation of monochlorinated benzene at lambda = 263.07 nm was found to be effective in the wavelength region from 263 nm to 265 nm. Also the excitation of polychlorinated biphenyls at lambda = 266 nm was found to be substantially more effective than at lambda = 280, 300 or 320 nm. The achievable sensitivity for real-time (1 min) measurements using the laser ionization TOFMS technique was found to be in the ppbV range.  相似文献   

3.
Delayed ionization is found to be absent for sub-picosecond laser excitation of free C60 and C70 at 248 nm. The autocorrelation trace obtained for C 60 + in a laser time-of-flight (TOF) mass spectrometer using two time-delayed and collinear 248 nm ultrashort laser pulses has a width of 1.1 ps (715 fs for sech2 pulses), in agreement with the laser pulse duration measurement in NO gas. Both above observations can be explained by direct ionization of C60 via coherent two-photon absorption by the high intensity sub-picosecond 248 nm laser excitation avoiding the channel leading to delayed ionization.  相似文献   

4.
Zirconium oxide clusters are generated in the gas phase by laser ablation of the metal into a flow of ca. 5% O2/95% He at 100 psig and supersonic expansion into a vacuum chamber. Mass spectra of neutral gas phase zirconium oxide clusters are obtained through photoionization at three different laser wavelengths: 118, 193, and 355 nm. Ionization of the clusters with 118 nm laser radiation is through a single photon ionization mechanism, while ionization by 193 and 355 nm laser radiation is through a multiphoton (three or more photon) mechanism. Fragment ion features are observed in the mass spectra of ZrmOn+ for only the 193 nm and 355 nm ionization schemes. The true neutral ZrmOn cluster distribution is obtained only through 118 nm single photon ionization, as verified by mass spectral peak linewidths and calculations of the cluster binding energies, ionization energies, and fragmentation rates. The neutral cluster distribution consists mainly of the series ZrmO2m and ZrmO(2m+1) for m = 1,..., approximately 30.  相似文献   

5.
The dynamics on the multi-photon dissociation of CS2+ molecular ions to produce CS + ions has been investigated by measuring the CS + photofragment excitation(PHOFEX)spectrum in the wavelength range of 385~435 nm,where the CS2+ molecular ions were prepared purely by[3+1]multiphoton ionization of the neutral CS2molecules at 483.2 nm. With the ~60 ns delay,which is much more than the laser pulse width(~5 ns),between ionization laser and dissociation laser,the threshold wavelength of dissociation laser to produce CS+ fragment ion from CS2+ molecular ions was obviously observed in the PHOFEX spectrum. The adiabatic appearance potential of the CS+ was determined to be(5.852 ± 0.005)eV above the X 2Σg,3/2(0,0,0)level of CS2+. The product branching ratios,(CS+/S+),as measured from the PHOFEX spectra,increase from 0 to slightly larger than 1 in the wavenumber range of 47200~50400 cm-1 . The[1+1]dissociation mechanism to get to CS++S from CS2+ was discussed and preliminarily attributed to(i)CS2+(X 2Πg)→ CS2+(A2Πu)through one-photon excitation,(ii)CS2+(A2Πu)→ CS2+(X*)via internal conversion process due to the vibronic coupling between the A and X states,(iii)CS2+(X*)→ CS2+(B 2Σ+u)through the second photon excitation,and(iv)CS2+(B 2Σ+u)→CS +(X 2Σ+)+S(3P),because of the potential curve crossing with the repulsive 4Σ- state and/or the 2Σ- state correlated with the second dissociation limit. However,when the dissociation laser overlaps the ionization laser in time scale in the laser-molecule interaction zone,the appearance threshold is not available in the PHOFEX spectrum. This fact shows that there are other mixed three-photon paths of[1+1+1'],[1+1'+1'],and[1+1'+1]to produce CS+ fragment ion from CS2+ molecular ions besides the above[1+1]dissociation mechanism,that is,CS2+(X 2Πg)→ CS2+(A 2Πu)through one-photon excitation[1]of dissociation laser,CS2+(A 2Πu)→CS2+(X*)via internal conversion process due to the vibronic coupling between the A and X states,CS2+(X*)→ CS2+(B 2Σ +u)through the second photon excitation by dissociation laser[1]or ionization laser[1'],and third photon excitation by ionization laser[1']or dissociation laser[1]to reach the adiabatic appearance potential to produce CS+ with the dissociation laser wavelengths longer than 423. 89 nm,at which the[1+1]dissociation mechanism to get to CS+ is unavailable.  相似文献   

6.
The excitation of UV-absorbing MALDI matrixes with visible laser (532 nm wavelength) and the desorption/ionization of biomolecules were performed by coating the analytes doped matrix with Au thin film (5–10 nm) using ion sputtering deposition. The Au film was first ablated with the laser of higher fluence, resulting in a crater/hole about the size of the laser beam spot on the target. After a few initial laser shots, analytes and matrix related ions were observed from the crater even at lower laser fluence. Electron microscopy inspection on the laser ablated region revealed the formation of nanoparticles with sizes ranging from <10 to 50 nm. Compared with the infra-red laser (1064 nm) excitation, the visible laser produced much higher abundance of matrix radical ions, and less heating effect as measured by the thermometer molecules. The results suggest the photo-excitation and photo-ionization of matrix molecules by the visible laser, possibly assisted by the gold nanoparticles and nanostructures left on the ablated crater.  相似文献   

7.
采用实验室研制的激光共振电离质谱仪,建立了锡(Sn)同位素的激光共振电离质谱分析方法.测量了锡原子的自电离态光谱,确认了锡的一条三色三光子共振电离路径,其各步激发/电离的激光波长分别为λ1=286.4 nm、λ2=811.6 nm、λ3=823.7 nm;通过将样品与氧化石墨烯溶液混合制样,有效提高了锡样品的电热原子化效率,1μg锡的总探测效率达到3×10-5以上,是直接滴样方式的4.5倍左右.采用本方法对锡、锑、硫(1:1:1,m/m)混合模拟样品进行测试,实现了锡的选择性电离,有效避免了测量过程中锑、硫对锡的同量异位素干扰,样品中主要同位素比116 Sn/120 Sn,117 Sn/120 Sn,118 Sn/120 Sn和119 Sn/120 Sn测量的相对标准偏差均°1%.结果表明,本方法能够有效解决TIMS、ICP-MS等商业质谱仪在锡同位素质谱分析过程中的同量异位素干扰难题,有望应用于反应堆乏燃料中裂变产物121m Sn、126 Sn的测量.  相似文献   

8.
A detailed study of the photocurrents in low-density polyethylene at wavelengths of 350 nm, 300 nm, and 240 nm has confirmed that the current is a linear function of intensity and has established that the observed decrease of current depends on the integrated flux of quanta at the metal–polymer interface, and is independent of intensity and pulse repetition rate. Comparison with electron excitation experiments shows that in the present case, optical ionization occurs within a few angstroms of the interface. Connections between the present results and known photodegradation data are explored, but no firm correlation can be obtained either for the initial “fast transient” or for the “slow transient” which occurs only in the shorter wavelength region. Possible models for hole injection are presented.  相似文献   

9.
The use of two-color two-photon (2c2p) excitation easily extends the wavelength range of Ti:sapphire lasers to the UV, widening the scope of its applications especially in biological sciences. We report observation of 2c2p excitation fluorescence of p-terphenyl (PTP), 2-methyl-5-t-butyl-p-quaterphenyl (DMQ) and tryptophan upon excitation with 400 and 800 nm wavelengths using the second harmonic and fundamental wavelength of a mode-locked Ti:sapphire femtosecond laser. This excitation is energetically equivalent to a one-photon excitation wavelength at 266 nm. The fluorescence signal is observed only when both wavelengths are spatially and temporally overlapping. Adjustment of the relative delay of the two laser pulses renders a cross correlation curve which is in good agreement with the pulse width of our laser. The fluorescence signal is linearly dependent on the intensity of each of the two colors but quadratically on the total incident illumination power of both colors. In fluorescence microscopy, the use of a combination of intense IR and low-intensity blue light as a substitute for UV light for excitation can have numerous advantages. Additionally, the effect of differently polarized excitation photons relative to each other is demonstrated. This offers information about different transition symmetries and yields deeper insight into the two-photon excitation process.  相似文献   

10.
Cross sections of the sequential two-photon ionization of Li2 are evaluated starting from ab initio CI wavefunctions and using different laser wavelengths for the excitation and ionization processes. In agreement with experimental results and previous calculations, a substantial isotope separation is found for the three isotopes of Li2, and a wide spectrum of wavelengths useful for effective isotope enrichment is suggested. Even in with an overcrowded spectrum, the fundamental role of Franck-Condon factors and thermal populations in defining the characteristic resonances of the fractionation process is confirmed. This result suggests a practical way to predict transitions useful for isotope enrichment.  相似文献   

11.
Influence of laser wavelength, laser irradiance and the buffer gas pressure were studied in high irradiance laser ablation and ionization source coupled with an orthogonal time-of-flight mass spectrometer. Collisional cooling effects of energetic plasma ions were proved to vary significantly with the elemental mass number. Effective dissociation of interferential polyatomic ions in the ion source, resulting from collision and from high laser irradiance, was verified. Investigation of relative sensitivity coefficients (RSC) of different elements performed on a steel standard GBW01396, which was ablated at 1064 nm, 532 nm, 355 nm, and 266 nm, has demonstrated that the thermal ablation mechanism could play a critical role with the first three wavelengths, while 266 nm induces non-thermal ablation principally. Experimental results also indicated that there is no evident discrepancy for most metal elements on RSCs and LODs among four wavelengths at high irradiance, except that high boiling point elements like Nb, Mo, and W have higher RSCs at higher irradiance regions of 1064 nm, 532 nm, and 355 nm due to thermal ablation. A geological standard and a garnet stone were also used in the experiment subsequently, and their RSCs and LODs for metal elements show nonsignificant dependence on wavelength at designated irradiances. All results reveal that relatively uniform sensitivity can be achieved at any wavelength for metal elements in the solids used in our experiments at an appropriate irradiance for the low pressure high irradiance laser ablation and ionization source.  相似文献   

12.
We report on studies of multiple ionization and fragmentation of free Hgn (n ≤ 80) clusters in the femtosecond time domain at wavelengths ranging from 255 nm to 800 nm. After excitation by single laser pulses of an intensity of 5 * 1011 W/cm2 we observe prompt formation of multiply charged Hgn clusters. The Hgn cluster size distribution observed up to n ≈ 80 shows in additon to singly charged also doubly and triply charged clusters with a surprisingly high amount of doubly charged clusters. The measured cluster size distribution is nearly independent of laser wavelengths. For higher laser intensities (2 * 1012 W/cm2) we observe multiply charged mercury atoms up to Hg5+. At 1013 W/cm2 molecules and clusters eventually disappear due to Coulomb explosion and complete Fragmentation. Only atomic ions, singly and multiply charged, with high kinetic energies are then observed.  相似文献   

13.
Single and double ionization of magnesium and calcium atoms following Nd: YAG laser multiphoton excitation at 1064 and 532 nm have been studied by employing pulses of 35 ps and 200 ps duration at intensities of the order of 1010–2×1013 W/cm2. The dependence of ion formation on the laser intensity has been measured and the slopes of the linear parts of the log-log plots and the ratios of saturation intensities for two pulse durations have been compared with the predictions of the scaling law. No evidence for a pure direct double ionization process has been obtained.  相似文献   

14.
Resonance-enhanced multiphoton ionization photoelectron spectroscopy has been applied to study the electronic spectroscopy and relaxation pathways among the 3p and 3s Rydberg states of trimethylamine. The experiments used femtosecond and picosecond duration laser pulses at wavelengths of 416, 266, and 208 nm and employed two-photon and three-photon ionization schemes. The binding energy of the 3s Rydberg state was found to be 3.087 +/- 0.005 eV. The degenerate 3p x, y states have binding energies of 2.251 +/- 0.005 eV, and 3p z is at 2.204 +/- 0.005 eV. Using picosecond and femtosecond time-resolved experiments we spectrally and temporally resolved an intricate sequence of energy relaxation pathways leading from the 3p states to the 3s state. With excitation at 5.96 eV, trimethylamine is found to decay from the 3p z state to 3p x, y in 539 fs. The decay to 3s from all the 3p states takes place with a 2.9 ps time constant. On these time scales, trimethylamine does not fragment at the given internal energies, which range from 0.42 to 1.54 eV depending on the excitation wavelength and electronic state.  相似文献   

15.
The photodissociation dynamics of iodocyclohexane has been studied using velocity map imaging following excitation at many wavelengths within its A-band (230 ≤ λ ≤ 305 nm). This molecule exists in two conformations (axial and equatorial), and one aim of the present experiment was to explore the extent to which conformer-specific fragmentation dynamics could be distinguished. Ground (I) and spin-orbit excited (I?) state iodine atom products were monitored by 2 + 1 resonance enhanced multiphoton ionization, and total kinetic energy release (TKER) spectra and angular distributions derived from analysis of images recorded at all wavelengths studied. TKER spectra obtained at the longer excitation wavelengths show two distinct components, which can be attributed to the two conformers and the different ways in which these partition the excess energy upon C-I bond fission. Companion calculations based on a simple impulsive model suggest that dissociation of the equatorial (axial) conformer preferentially yields vibrationally (rotationally) excited cyclohexyl co-fragments. Both I and I? products are detected at the longest parent absorption wavelength (λ ~ 305 nm), and both sets of products show recoil anisotropy parameters, β > 1, implying prompt dissociation following excitation via a transition whose dipole moment is aligned parallel to the C-I bond. The quantum yield for forming I? products, Φ(I?), has been determined by time resolved infrared diode laser absorption methods to be 0.14 ± 0.02 (at λ = 248 nm) and 0.22 ± 0.05 (at λ = 266 nm). Electronic structure calculations indicate that the bulk of the A-band absorption is associated with transition to the 4A(') state, and that the (majority) I atom products arise via non-adiabatic transfer from the 4A(') potential energy surface (PES) via conical intersection(s) with one or more PESs correlating with ground state products.  相似文献   

16.
Initial results of infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry of proteins by using the Vanderbilt free-electron laser as the source of selective vibrational excitation are reported. The ability of this laser to initiate desorption and ionization by excitation of specific vibrational modes is demonstrated. For the first time it is shown that IR-MALDI mass spectrometry at wavelengths other than those available from conventional fixed-frequency IR lasers, that is, 2.79 (Er:YSGG), 2.94 (Er:YAG), and 9.3-10.6 μm (CO2), is feasible and exhibits similar performance. IR-MALDI mass spectra were taken in the wavelength ranges 2.8-4 and 5.5-6.5 μm, covering the absorption bands of the O-H and C=O stretch vibrations typical of many organic compounds such as succinic acid, fumaric acid, or nicotinic acid, which were used as matrices in these studies. A comparison between these results and Er:YAG/YSGG MALDI data are given. The potential of IR-MALDI at wavelengths near the C=O stretch vibration and the possibilities for studies of the IR-MALDI mechanisms by using this kind of tunable source are discussed.  相似文献   

17.
活性碳纤维阴极电芬顿反应降解微囊藻毒素研究   总被引:5,自引:0,他引:5  
以具有高比表面积的活性碳纤维作为阴极,通过电芬顿反应降解水中微囊藻毒素(MCRR,MCLR)的电化学方法系统考察了电流密度、pH值和Fe2+浓度等因素对微囊藻毒素降解效果的影响.实验结果表明,在Fe2+浓度为1.0mmol/L和电流密度为6.6mA/cm2条件下,电化学处理60min,MCRR(8.81mg/L)去除率为75%,MCLR(6.36mg/L)去除率为94%.证明过氧化氢可以通过电化学还原在活性碳纤维阴极表面高效产生,微囊藻毒素可被高效降解去除.  相似文献   

18.
A time-of-flight mass spectrometer in reflectron configuration has been used for the real-time detection of combustion products. The products of a premixed laminar C2H4/O2 flame at atmospheric pressure were sampled along its axis, diluted with inert gas and carried to the ion source as a molecular beam under minimal perturbation. Electron ionization and different optical ionization sources are compared. Photoionization was achieved with laser radiation from a Nd:YAG nanosecond pulsed laser at two different wavelengths in the UV range (266 and 355 nm). The mass spectra obtained using laser wavelength of 355 nm and electron ionization present a series of ions regularly spaced by 18 m/z units up to m/z 2000. This series allowed precise calibration of the instrument for compounds of high molecular weight. Information on the chemical nature of the analyzed species has been obtained by comparing mass spectra produced with different ionization methods. In order to better understand the growth mechanisms, polycyclic aromatic hydrocarbon sequences have been analyzed by fast Fourier transform of the mass spectra.  相似文献   

19.
Xue G  Yeung ES 《Electrophoresis》2002,23(10):1490-1498
Two computer-controlled galvanometer scanners are adapted for two-dimensional step scanning across a 96-capillary array for laser-induced fluorescence detection. 488 nm and 514 nm laser lines from the same Ar(+) laser were alternately coupled for two-color excitation in each capillary. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries and the excitation wavelengths. Based on the differences in absorption spectra for the dyes, the peak-height ratios in the 488 nm and 514 nm excitation electropherograms were used for peak identification for multiplexed capillary electrophoresis. Successful base calling for 24-capillary DNA sequencing was achieved to 450 bp with 99% accuracy. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components and flexibility due to the independent paths for excitation and emission.  相似文献   

20.
Polychlorinated biphenyls (PCBs) are hazardous compounds for which there are few methods involving real-time measurement. Recently, the development of the pulsed-laser technique has enabled us to measure aromatic hydrocarbons quite rapidly. In particular, the LI-TOFMS (laser ionization time of flight mass spectrometry) technique is expected to be a powerful method for on-line, selective and sensitive measurements. In the context of developing a highly selective and sensitive technique, the effective laser wavelength and pulse duration for laser ionization of 2-4 chlorinated PCBs are considered. Excitation at lambda = 266 nm was found to be substantially more effective than at lambda = 280, 300 or 320 nm. Also, picosecond excitation for PCBs underwent more efficient ionization (by a factor of over 10) and less fragmentation than nanosecond excitation. The achievable sensitivity for trichlorinated biphenyl in a real-time (1 min) measurement using the LI-TOFMS technique was estimated to be in the sub-ppbV range (< 0.01 mg/Nm3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号