首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
A series of binuclear CuII complexes [Cu2XL] n+ having two copper(II) ions bridged by different motifs (X = OH, MeCO2 , or Cl) have been prepared using the ligands: H2L1 = 4-methyl-2-[N-(2-{dimethylamino}ethyl-N-methyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol, H2L2 = 4-nitro-2-[N-(2-{dimethylamino}ethyl-N-methyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol, H2L3 = 4-methyl-2-[N-(2-{diethylamino}ethyl-N-ethyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol and H2L4 = 4-nitro-2-[N-(2-{diethylamino}ethyl-N-ethyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol. The complexes have been characterized by spectroscopic, analytical, magnetic and electrochemical measurements. Cryomagnetic investigations (80–300 K) revealed anti-ferromagnetic exchange between the CuII ions (–2J in the range –50 to –182 cm–1). The strength of anti-ferromagnetic coupling lies in the order: OAc > OH > Cl. Cyclic voltammetry revealed the presence of two redox couples, assigned to CuII/CuII/CuII/CuI/CuI/CuI. The first reduction potential is sensitive to electronic effects from the aromatic ring substituents and steric effect on the donor nitrogens (side arm) of the ligand systems.  相似文献   

2.
Binuclear CuII complexes having new flexible heptadentate ligands 2,6-bis{[bis(3,3-N,N-dimethylaminopropyl)amino]methyl}-4-bromophenol [HL1], 2,6-bis(3,3-N,N-dimethylaminopropyl)amino]methyl}-4-methylphenol [HL2], and 2,6-bis{[bis(3,3-N,N-dimethylaminopropyl)amino]methyl}-4-methoxyphenol [HL3], capable of assembling two copper ions in close proximity have been synthesized. Comparisons of the charge-transfer (CT) features, observed in electronic spectra of these complexes, are correlated with the electronic effect on the aromatic ring of the ligand systems. Cyclic voltammetry has revealed the existence of two reduction couples,
The first is sensitive to the electronic effects of aromatic ring substituents of the ligand system, shifting to more positive potentials when more electrophilic groups replace the existing substituents. The conproportionation constants (k con) for the mixed valent CuICuII complexes have been determined electrochemically. The magnetic susceptibilities of the complexes have been measured over the 70–300 K range and the exchange coupling parameter (–2J) determined by a least squares fit of the data which indicates an antiferromagnetic spin exchange (–2J = 94–172 cm–1) between the CuII ions with bridging units in the order: N3 NO2 > OAc > OH.  相似文献   

3.
Preparation of pentadentate ligands L1, L2, L3 and L4, where L1 = 4-chloro-3-methyl-2[(prolin-1-yl)methyl]-6-[N-phenyl piperazin-1-yl)methyl]phenol, L2 = 4-ethyl-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol, L3 = 4-chloro-3-methyl-2-[(prolin-1-yl)methyl]-6-[N-methyl piperazin-1-yl]methyl phenol, L4 = 4-methoxy-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol is described together with that of the corresponding Cu(II) complexes with various bridging motifs like OH, OAc and NO2. The complexes are characterized by elemental analysis, electrochemical and electron paramagnetic spectral studies. Redox properties of the complexes in acetonitrile are highly quasireversible due to the chemical or/and stereochemical changes subsequent to electron transfer. The complexes show resolved copper hyperfine EPR at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. Strengths of the antiferromagnetic interactions are in the order NO2>OAc>OH.  相似文献   

4.
The synthesis, reduction, optical and e.p.r. spectral properties of a series of new binuclear copper(II) complexes, containing bridging moieties (OH, MeCO2 , NO2 , and N3 ), with new proline-based binuclear pentadentate Mannich base ligands is described. The ligands are: 2,6-bis[(prolin-1-yl)methyl]4-bromophenol [H3L1], 2,6-bis[(prolin-1-yl)methyl]4-t-butylphenol [H3L2] and 2,6-bis[(prolin-1-yl)methyl]4-methoxyphenol [H3L3]. The exogenous bridging complexes thus prepared were hydroxo: [Cu2L1(OH)(H2O)2] · H2O (1a), [Cu2L2(OH)(H2O)2] · H2O (1b), [Cu2L3(OH)(H2O)2] · H2O (1c), acetato [Cu2L1(OAc)] · H2O (2a), [Cu2L2(OAc)] · H2O (2b), [Cu2L3(OAc)] · H2O (2c), nitrito [Cu2L1(NO2)(H2O)2] · H2O (3a), [Cu2L2(NO2)(H2O)2] · H2O (3b), [Cu2L3(NO2)(H2O)2] · H2O (3c) and azido [Cu2L1(N3)(H2O)2] · H2O (4a), [Cu2L2(N3)(H2O)2] · H2O (4b) and [Cu2L3(N3)(H2O)2] · H2O (4c). The complexes were characterized by elemental analysis and by spectroscopy. They exhibit resolved copper hyperfine e.p.r. spectra at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. The strength of the antiferromagnetic coupling lies in the order: NO2 N3 OH OAc. Cyclic voltammetry revealed the presence of two redox couples CuIICuII CuIICuI CuICuI. The conproportionality constant K con for the mixed valent CuIICuI species for all the complexes have been determined electrochemically.  相似文献   

5.
Hong  Xian-Lan  Chao  Hui  Wang  Xiang-Li  ji  Liang-Nian  li  Hong 《Transition Metal Chemistry》2004,29(5):561-565
Two novel RuII complexes [Ru(dppt)(bpy)Cl]ClO4 (1) and [Ru(pta)(bpy)Cl]ClO4 (2)[dppt, pta and bpy = 3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine, 3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene and 2,2-bipyridine, respectively] were synthesized and characterized by elemental analysis and electrospray mass spectrometry, 1H-n.m.r., and u.v.–vis spectroscopy. The redox properties of the complexes were examined using cyclic voltammetry. Due to the strong -accepting character of asymmetric ligands, the MLCT bands of (1) and (2) are shifted significantly to lower energies by comparison with [Ru(tpy)(bpy)Cl]+.  相似文献   

6.
The [Pd(cod)(cotl)]ClO4 complex (cod = cycloocta-1,5-diene; cotl = cyclooctenyl, C18H13 ) undergoes substitutions with new Schiff base ligands containing benzimidazole L [L = 2-(2-N-n-propylidenephenyl)benzimidazole (L1); 2-(2-N-i-propylidenephenyl)benzimidazole (L2); 2-(2-N-n-butylidenephenyl)benzimidazole (L3); 2-(2-N-i-butylidenephenyl)benzimidazole (L4)]. Facile displacement of cod by L occurs to produce complexes of the type [Pd(cotl)L]ClO4· nMe2CO (n= 0; L = L1, L2 or L3; n= 2, L = L4). Dihalobridge complexes of the type [Pd(cotl)X]2(X = Cl or Br) undergo halogen-bridge cleavage with L1–L4 to give mononuclear complexes of the type Pd(cotl)LX · nH2O (n= 2, X = Cl, L = L1; n= 0, X = Br, L = L1; n= 0, X = Cl, L = L2; n= 0, X = Cl or Br, L = L3; n= 0, X = Cl, L = L4; n= 2, X = Br, L = L4) and a binuclear complex [Pd(cotl)Br]2L2. The complexes were characterised by physical properties, i.r., 1H- and 13C-n.m.r. spectral techniques and by mass spectra. Probable structures have been proposed.  相似文献   

7.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

8.
The binuclear complexes [(UO2bipy)2L1–3]NO3, (1–3), {H3L1–3=1-(2-hydroxybenzoyl)-2-(2-hydroxy-benzal/3-methoxybenzal/naphthal)hydrazine}, and [(UO2bipy)2L4–5](AcO)2, (4–5), [H2L4–5 = 1-(2-aminobenzoyl)-2-(2-hydroxy-benzal/naphthal)hydrazine], have been synthesised. Complexes (4–5) possess longer O=U=O bonds than those in the complexes (1–3) as the strong -donating phenolate is replaced by the amino group. The spectral data and electrochemical behaviour confirm the electronic nonequivalence of the coordination environments around the two uranyl ions in these complexes.  相似文献   

9.
New bis[N-(2,6-di-t-butyl-1-hydroxyphenyl)salicylideneminato]palladium(II) [Pd(L x )2] complexes bearing HO and MeO substituents on the salicyaldehyde moiety were prepared, and their spectroscopic properties, as well as redox reactivity towards PbO2 and PPh3, examined by e.s.r. and u.v. spectroscopy. The complexes display charge-transfer bands in the 670–692 nm range in polar solvents, which are assigned to the d(Pd) * (chelated quinoid) transition. One-electron oxidation of Pd(L x )2 produces PdII-stabilized radicals in which the unpaired electrons are localized on the phenoxy fragments and do not couple with the two radical centers. The complexes are easily reduced with PPh3 via intramolecular electron-transfer from ligand to metal to give various radical intermediates and Pd. All detected radical species have been characterized by e.s.r. spectroscopy.  相似文献   

10.
New picoline adducts with carbamic acid [(furan-2-yl)methylene]hydrazide–CuII (CFMH) (1); thiocarbamic acid [(furan-2-yl)methylene]hydrazide–CuII (TFMH) (2); carbamic acid [(furan-2-yl)ethylidene]hydrazide–CuII (CFEH) (3), thiocarbamic acid [(furan-2-yl)ethylidene]hydrazide–CuII (TFEH) (4); carbamic acid [(thiophene-2-yl) methylene]hydrazide–CuII (CTMH) (5), thiocarbamic acid [(thiophene-2-yl)methylene]hydrazide–CuII (TTMH) (6), carbamic acid [(thiophene-2-yl)ethylidene]hydrazide–CuII (CTEH) (7), thiocarbamic acid [(thiophene-2-yl)ethylidene]hydrazide–CuII (TTEH) (8) have been prepared and characterized by analytical, i.r., electronic, e.s.r. and c.v. spectral data. The electronic spectra suggest distorted octahedral geometry for all the picoline adducts. E.s.r. g values lie between 2.251–2.286 at l.n.t. All the adducts undergo a quasi-reversible one-electron reduction in the range +0.47 to +0.51 V versus s.c.e., attributable to the CuIII/CuII redox couple. The electron transfer is much faster in the semicarbazone complexes than in the thiosemicarbazone complexes. All adducts showed increased nuclease activity in the presence of oxidant; the nuclease activity is compared with that of the parent copper(II) complexes.  相似文献   

11.
The condensation of the potassium salt of thiazolidine-2,4-dione with bis(-chloro-ethyl) sulfide leads to bis[-(thiazolidine-2,4-dion-3-yl)ethyl]sulfide, which is readily oxidized by H2O2 to bis[-(thiazolidine-2,4-dion-3-yl)ethyl]sulfoxide. Products of condensation of the latter with oxo compounds were obtained. The structures of the synthesized compounds were proved by their UV and IR spectra.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 48–50, January, 1981.  相似文献   

12.
A chiral Schiff base ligand (H2L) was obtained by condensing 2-hydroxynaphthalene-1-carbaldehyde with substituted (1R,2R)-(–)-diaminocyclohexane. Chiral Schiff base complexes [CuL], [NiL], [ZnL] and [MnLOH] have been synthesized and characterized by elemental analyses, M, i.r., u.v.–vis. and 1H-n.m.r. and magnetic measurements.  相似文献   

13.
14.
Two new diamines — [1,3-bis(5-phenyl-1,2,4-triazol-3-yl)-4,6-diamino]benzene and [1,3-di-(2-benzimldazolyl)-4,6-diamino]benzene — were synthesized from 4,6-dinitroisophthalic acid. Newheterocyclic systems — 3,5,9,11-tetraphenyl[benzo[1,2-a; 4,5-a]bis(1,2,4-triazolo[4,3-c]pyrimidine)] and 2,16-diphenyl[benzo[1,2-a;4,5-a']bis(pyrimido[1,6-a]benzimidazole)]—were obtained by reaction of the diamines with benzoyl chloride and subsequent cyclization.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1274–1277, September, 1977.  相似文献   

15.
Summary The reaction of [CrCl3(DMF)3] with C-meso-5, 12-dimethyl-1, 4, 8, 11-tetra-azacyclotetradecane(LM) in DMF gives a mixture ofcis-[CrLMCl2]Cl (ca. 90%) andtrans-[CrLMCl2]Cl (ca. 10%). These complexes are readily separated, as thecis-isomer is insoluble in warm methanol while thetrans-isomer is soluble. Using the dichlorocomplexes as precursors it has been possible to prepare a range ofcis-[CrLMX2]+ complexes (X=Br, NO 3 , N 3 , NCS and X2=bidentate oxalate) and alsotrans-[CrLMX2]+ complexes (X=Br, H2O or NCS). The spectroscopic properties and detailed stereochemistry of the complexes are discussed.The aquation and base hydrolysis kinetics ofcis- andtrans-[CrLMCl2]+ have been studied at 25° C. Base hydrolysis of thecis-complex is extremely rapid with KOH =1.46×105 dm3 mol–1 at 25° C. This unusual reactivity appears to be associated with thetrans II stereochemistry of thesec-NH centres of the macrocycle. Base hydrolysis of thetrans complex with thetrans III chiral nitrogen stereochemistry is quite normal with kOH =1.1 dm3 mol–1 s–1 at 25° C.  相似文献   

16.
1:1 and 2:1 palladium(II) complexes of egta4– (egta4– = glycine, N,N-(1,2-ethanediylbis)(oxy-2,1-ethanediyl)bis[N-carboxymethyl]) were prepared by 1:1 and 2:1 addition of K2PdCl4 to K4egta, and examined by 1H-, 13C- and 15N-n.m.r. methods. The 1:1 complex, [Pd(egta)]2– in solution, utilizes a square-planar coordination comprised of two nitrogen and two glycinato carboxylate donors of egta4–, leaving two glycinato carboxylates pendant. The complex has a cis-(R,S) stereochemistry which places both pendant carboxylates below the PdN2O2 square plane and the tether backbone of egta4– in the up, up sense above the same plane. The cis-(R,S) assignment was assisted by computer simulations of the 13C-n.m.r. spectrum for four possible isomers. Only cis-(R,S) and trans-(R,R) calculated 13C-spectra were compatible with the observed 13C-n.m.r. pattern. The HH NOESY spectrum of [Pd(egta)]2– detects long range coupling of the backbone –OCH2CH2O– linkage with both coordinated and pendant glycinato CH2 moieties. The cis-(R,S) isomer's tortional movements allow such contacts whereas a trans-(R,R) isomer does not. The 2:1 complex, [Pd2(egta)(H2O)2] in solution has an extended-chain structure with each palladium(II) center coordinated in the mer-iminodiacetate-like coordination with two bound glycinato-functionalities.  相似文献   

17.
Summary The copper(III)-imine-oxime complexes [CuIII(Enio)]+ and [CuIII(Pre)]+ {EnioH2 =N,N-ethylene bis(isonitrosoacetylacetoneimine) and PreH2 = N,N-propylene bis (isonitrosoacetylacetoneimine)} react very rapidly with iodide. The rate law under fixed conditions for the reaction is given by the equation: –d[CuIII]/dt = (2k2[I] + 2k3[I]2)[CuIII] The [CuIII(Enio)]+ reaction was pH-independent whereas the [Cu (Pre)]+ reaction rate increased with increasing pH. Both the k2 and the k3 pathways are believed to involve one-electron transfer. An inner-sphere mechanism may operate in the pathway, first-order in [I].  相似文献   

18.
The reaction betweenL-arabinose and hydrated uranyl salts has been investigated in aqueous solution and the solid complexes of the type UO2(L-arabinose)X 2 · 2 H2O, whereX=Cl, Br, and NO 3 , have been isolated and characterized. Due to the marked similarities with those of the structurally known Ca(L-arabinose)X 2 · 4 H2O and Mg(L-arabinose)X 2 · 4 H2O (X=Cl or Br) compounds, the UO 2 2+ ion binds obviously to twoL-arabinose moieties, through O1, O5 of the first and O3, O4 of the second molecule resulting into a six-coordinated geometry around the uranium ion with no direct U-X (X=Cl, Br or NO 3 ) interaction. The intermolecular hydrogen bonding network of the freeL-arabinose is rearranged upon uranium interaction. The -anomer configuration is predominant in the freeL-arabinose, whereas the -anomer conformation is preferred in the uranium complexes.
Darstellung, spektroskopische und Strukturanalyse von Uran-Arabinose Komplexen
Zusammenfassung Es wurde die Reaktion zwischenL-Arabinose und hydratisierten Uranylsalzen in wäßriger Lösung untersucht und kristalline Komplexe des Typs UO2(L-Arabinose)X 2 · 2 H2O mitX=Cl, Br und NO 3 isoliert und charakterisiert. Wie aus markanten Ähnlichkeiten der Komplexe mit den bekannten Verbindungen Ca(L-Arabinose)X 2 · 4 H2O und Mg(L-Arabinose)X 2 · 4 H2O (X=Cl oder Br) abzuleiten ist, bindet das UO 2 2+ -Ion mit zweiL-Arabinose Einheiten, wobei sich durch die O1,O5-Koordination des ersten und die O3,O4-Koordination des zweiten Moleküls eine sechs-koordinierte Geometrie um das Uranylion [ohne direkte U-X (X=Cl, Br oder NO 3 ) Wechselwirkung] ausbildet. Die intermolekularen Wasserstoffbrücken zeigen nach der Wechselwirkung mit dem Uranylion eine Umgruppierung. In der freienL-Arabinose ist das -Anomere vorherrschend, in den Urankomplexen hingegen das -Anomere.
  相似文献   

19.
New series of manganese(III) complexes and amino acid Schiff bases have been prepared from 2-hydroxy-1-naphthaldehyde and α-amino acids [L-aspartic acid (Asp), L-asparagine (Asn), L-glutamic acid (Glu) and L-glutamine (Gln)]. The structures of the ligands and manganese complexes were identified using elemental analyses, i.r, electronic spectra, 1H-n.m.r spectra, magnetic moment measurements and thermogravimetric analyses (t.g.a). The results suggest that H2L1: [N-(2-hydroxy-1-naphthylidene) aspartic acid] and H2L3: [N-(2-hydroxy-1-naphthylidene)glutamic acid] Schiff bases behave as trianionic tetradentate species and coordinate to Mn(III) ion according to the general formula [MnL] · xH2O complexes. But, H2L2: [N-(2-hydroxy-1-naphthylidene) asparagine] and H2L4: [N-(2-hydroxy-1-naphthylidene)glutamine] Schiff bases behave as dianionic tridentate and coordinate to Mn(III) ion in the general formula for [MnL(OOCH3)] · xH2O complexes.  相似文献   

20.
34-Membered macrocyclic hexaamine containing two independent N3 donor sets forms homodinuclear copper(II) complexes. Displacements of anions within the copper(II) chloride complexes occurred easily upon addition of different anions to the CuCl2 complex. All new complexes were characterised by elemental analysis, IR, UV/VIS spectroscopy, and magnetic susceptibility measurements. Tetranuclear complexes indicate relation Cu –1 vs. T in agreement with the Curie–Weiss law. A behaviour anomalous in relation to the phthalate complexes is shown by the [Cu4L2Cl4(ox)2] complex in which an antiferromagnetic coupling (J = - 53.9 cm–1) between the Cu2+ ions through the C2O 4 2– bridge is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号