首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
GaAs was grown on patterned 1 0 0 on- and off-axis GaAs substrates by organometallic vapor-phase epitaxy (OMVPE). Patterned mesas were observed to change shape because lateral growth rates varied by more than an order of magnitude in different crystallographic directions. For this study, misoriented GaAs (1 0 0) wafers were polished 3° toward the nearest [1 1 0] or [1 1 1] family of directions, and 320 nm high cross-shaped mesas were fabricated. OMVPE growth was performed between 550°C and 650°C for 1 h at a vertical growth rate of approximately 1.3 μm/h. Atomic force microscopy showed that three effects have a powerful influence on lateral growth initiated at mesa sidewalls. First, the symmetry of the dominant surface reconstruction has a major effect on the diffusion of Ga adatoms. Rapid Ga diffusion occurs along the 0 1 1–0−1−1 axis in OMVPE, or the perpendicular 0−1 1–0 1−1 axis in molecular beam epitaxy, and appears to be a result of the different surface reconstructions which exist in the two growth ambients. Second, misorientation of the wafer causes a growth asymmetry as Ga adatoms move preferentially from high-to-low terraces. When terrace steps descend toward a mesa wall, rapid lateral growth away from the wall is always observed. When terrace steps descend away from a mesa wall, little lateral growth occurs and even reduced vertical growth may be observed. When the misorientation and reconstruction symmetries align, the surface acts like an atomic diode and the rapid lateral growth can exceed the vertical growth rate by more than an order of magnitude. Third, on misoriented substrates, step bunching increases with increasing temperature, and this can lead to significant changes in the original shape of a mesa. A growth model is presented which relates the lateral growth rate in different crystallographic directions to the substrate misorientation, the growth temperature, and the partial pressure of As during growth. It is also shown that different surface reconstruction patterns are related to chemical species with continuously varying concentrations rather than thermodynamically distinct phases.  相似文献   

2.
We report results of a photoluminescence (PL) study of homoepitaxial N-polar GaN films grown by metal-organic chemical vapour deposition on vicinal GaN single crystal substrates. Off-angles of 2° and 4° towards the direction as well as 4° in the direction were investigated. Along with a remarkable improvement of the epilayer morphology, a significant reduction of the unintentional/intrinsic donor concentration is achieved for all considered misorientations. As a consequence, PL spectra with narrow bound and free excitonic lines were observed. The misorientation of 4° towards the direction results in an N-polar epilayer of the best optical quality.  相似文献   

3.
Single crystals of a sulphospinel CuIr2S4 have been grown from bismuth solution by a slow cooling method for the first time. The grown crystals have a maximum edge of about 1 mm in size and a mirror-like shining surface. Optimum growth conditions are fairly strict. The specific weight of starting materials for the crystal growth is found to be 0.30 g of CuIr2S4 and 10.0 g of Bi in order to obtain good quality crystals. The starting and finishing temperatures for the slow cooling step in the temperature control are 1000 and 500°C. The pertinent cooling rate is 2°C/h. Since the volume of bismuth itself expands in the transition from liquid phase to solid phase, a simple method of separation of the grown crystals from the liquid solution will be proposed for avoiding the mechanical damages to the grown crystals. The single crystals have the normal-spinel structure of the lattice constant a=9.849 Å at room temperature. A step-like anomaly in the susceptibility of the single crystals, corresponding to the metal–insulator transition in the resistivity, occurs much sharply than in the powder specimen.  相似文献   

4.
Calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) crystals were grown by the Czochralski method. The effective segregation coefficients of Ca, Ba, Na elements in CBN-28 crystal growth were measured, and the rocking curve from 0 0 2 reflection of CBN-28 wafer was also measured by the high-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was measured to be 70.6″. The measured dependence of dielectric constants on temperature showed the Curie temperature of the CBN-28 crystals is between 246.8 and 260 °C. Typical polarization–electric field (PE) hysteresis loops were measured at room temperature. Ferroelectric 180° domains were observed by scanning electron microscopy (SEM) on the etched (0 0 1) surface of the CBN-28 crystals. The transmittance of [0 0 1]-oriented CBN-28 crystals was measured and the result shows that optical properties of CBN-28 crystal are almost the same as those of SBN for wavelengths between 2500 and 7500 nm.  相似文献   

5.
InP substrates and epilayers grown by MOVPE have been studied by AFM. For different misorientation angles, we observed the surface of the substrate after annealing under phosphine (PH3) and of the epilayers under different growth conditions such as growth temperature Tg and trimethylindium (TMI) partial pressure. After annealing the terrace width corresponds to the nominal value of misorientation angle measured by X-ray diffraction. We observed different topographies and roughnesses for the grown layers corresponding to different growth modes. We propose, taking into account the roughness of the surface, a calculation of the step height and terrace width. For 2D nucleation (θ ≤ 0.2° and Tg = 500°C) and step flow mode, the roughness is low while it is increased by step bunching (θ ≥ 0.5° and Tg ≥ 580°C). Moreover we have examined the surface morphology for different misorientation angles and determined the influence of growth conditions (growth temperature, indium partial pressure) on the growth mechanism. At Tg = 580°C the increase of the TMI partial pressure in the reactor enhances the step bunching and leads to larger terraces.  相似文献   

6.
We investigated defect-selective wet chemical etching of freestanding aluminum nitride (AlN) single crystals and polished cuts in a molten NaOH–KOH eutectic at temperatures ranging from 240 to 400 °C. Due to the strong anisotropy of the AlN wurtzite structure, different AlN faces get etched at very different etching rates. On as-grown rhombohedral and prismatic facets, defect-related etching features could not be traced, as etching these facets was found to mainly emphasize features present already on the un-etched surface. On nitrogen polar basal planes, hexagonal pyramids/hillocks exceeding 100 μm in diameter may form within seconds of etching at 240 °C. They sometimes are arranged in lines and clusters, thus we attribute them to defects on the surface, presumably originating in the bulk material. On aluminum polar basal planes, the etch pit density which saturates after approx. 2–3 min of total etching time at 350 °C equals the density of a certain type of dislocations (presumably screw dislocations) threading the surface. Smaller etch pits form around annealed indentations, in the vicinity of some bigger etch pits after repeated etching, and sometimes also isolated on the surface area. Although alternate explanations exist, we attribute these etch pits to threading mixed and edge dislocations. This paper features etching parameters optimized for different planes and models on the formation of etching features especially on the polar faces. Finally, the issue of reliability and reproducibility of defect detection and evaluation by wet chemical etching is addressed.  相似文献   

7.
High quality zinc oxide (ZnO) films were obtained by thermal oxidation of high quality ZnS films. The ZnS films were deposited on a Si substrate by a low-pressure metalorganic chemical vapor deposition technique. X-ray diffraction spectra indicate that high quality ZnO films possessing a polycrystalline hexagonal wurtzite structure with preferred orientation of (0 0 2) were obtained. A fourth order LO Raman scattering was observed in the films. In photoluminescence (PL) measurements, a strong PL with a full-width at half-maximum of 10 nm around 380 nm was obtained for the samples annealed at 900°C at room temperature. The maximum PL intensity ratio of the UV emission to the deep-level emission is 28 at room temperature, providing evidence of the high quality of the nanocrystalline ZnO films.  相似文献   

8.
The epitaxial growth of GaN layers on sapphire substrates by molecular beam epitaxy at low temperatures (500°C) has been investigated. Samples exhibited a transition from hexagonal to mixed hexagonal/cubic phase under conditions of increasing Ga flux as determined using a TEM-RHEED technique with complementary SEM and PL observations. Embedded cubic grains adopted two domain variants with additional evidence for twinning.  相似文献   

9.
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown.  相似文献   

10.
This study investigated ammonothermal synthesis of nanocrystalline gallium nitride (GaN) in supercritical ammonia with acidic mineralizers NH4X (X=Cl, Br, I) at 400–500 °C. Results showed that three types of acidic mineralizers could effectively accelerate the formation of GaN. The mixed hexagonal/cubic phase fractions and lattice parameters of nanocrystalline GaN were calculated by the Rietveld refinement method. SEM showed an agglomerate of nanocrystalline GaN. A considerable amount of GaN was synthesized using NH4Cl as the mineralizer, however, there was no yield using NH4Br or NH4I at 400 °C. For acidic mineralizers, both hexagonal structures (wurtzite) and cubic structures (zincblende) were obtained in ammonothermal synthesis by XRD and Raman measurement. GaN synthesized with NH4Br and NH4I showed mixed phases of hexagonal-GaN (h-GaN) and cubic-GaN (c-GaN) at 450–500 °C. In the case of NH4Cl mineralizer, GaN only exhibited mixed phases of h-GaN and c-GaN at 500 °C, but pure h-GaN at 400–450 °C. Based on the results, NH4Cl favored pure h-GaN, and NH4Br and NH4I favored c-GaN at 400–450 °C.  相似文献   

11.
The knowledge of the phase relations and solubilities in the Y–Ba–Cu–O and Nd–Ba–Cu–O systems are of fundamental importance for crystal growth and liquid-phase epitaxy of YBa2Cu3O7−δ (YBCO) and Nd1+xBa2−xCu3Oδ (NdBCO). The determination of the solubility curve of YBCO and NdBCO in a BaO/CuO flux containing 31 mol% BaO was done by observation of the formation and dissolution of crystals on the surface of the high-temperature solution. The heat of the solution of YBCO at 1000°C was found to be 34.7 kcal/mol, and for NdBCO at 1060°C, it was found to be 28.1 kcal/mol. The determination of the solubility curves requires special care, and the problems of the time-dependent shift of the solution composition due to the corrosion of the crucible is discussed. The scatter of the solubility data published by different authors could be due to the use of solutions with different Ba : Cu ratios, different determination methods, i.e. different crystallization mechanisms, different crucibles and starting chemicals.  相似文献   

12.
The structural, optical, and electrical properties of GaN films grown on silica glass substrate by metalorganic chemical vapor deposition were studied. X-ray diffraction showed that the films were grown in hexagonal structure with a predominant (0 0 0 2) peak. A broad and strong band-edge emission and very weak yellow luminescence in photoluminescence (PL) spectra were observed. And the temperature dependence of the PL spectra was extensively studied. The thermal quenching activation energy was found to be very close to the donor activation energy determined from the temperature dependence of the carrier concentration. Longitudinal optical phonons were found to be responsible for the PL broadening above 100 K.  相似文献   

13.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

14.
The influence of the presence of BaO impurity on the optical absorption, radiation hardness and thermally stimulated luminescence of BaF2 has been investigated. The presence of oxygen impurity gives rise to three absorption bands in the UV region, peaking around 220, 280 and 335 nm. Further, the impurity is found to be detrimental to crystal hardness against ionizing radiations. The thermally stimulated luminescence (TSL) has been studied from gamma-irradiated crystals containing different fractions of BaO impurity. Four prominent glow peaks around 100°C (peak I), 150°C (peak II), 220°C (peak III) and 290°C (peak IV) are observed for crystals containing BaO impurity concentrations lower than 0.5% (by wt). For crystals containing higher impurity concentrations, two additional peaks around 75°C and 260°C are also observed. The kinetics of TSL emission is observed to be of first order, implying that the absorption and the emission centers responsible for TSL are the same. The normalized TSL output for peak I is found to vary linearly with the concentration of oxide impurity. This fact can be utilized to detect the presence of minute amounts of oxygen in BaF2 lattice, which is crucial to the growth of crystals exhibiting high radiation hardness.  相似文献   

15.
Good quality, large single crystals of CdSe were grown by the modified growth method (i.e., vertical unseeded vapor phase growth with multi-step purification of the starting material in the same quartz ampoule without any manual transfer between the steps). Lower temperature gradients (8–9°C/cm) at the growth interface were used for the crystal growth. As-grown CdSe crystals was characterized by X-ray diffraction, scanning electron microscopy, energy dispersive analyzer of X-rays, high-resistance instrument measurement, and etch-pit observation. It is found that there are two cleavage faces of (1 0 0) and (1 1 0) orientations on the crystal, the resistivity is about 108 Ω cm, and the density of etch pits is about 103–4/cm2. The crystal was cut into wafers and was fabricated into detectors. The detectors were tested using an 241Am radiation source. γ-ray spectra at 59.5 keV were obtained. The results demonstrated that the quality of the as-grown crystals was good. The crystals were useful for fabrication of room-temperature-operating nuclear radiation detectors. Therefore, the modified growth technique is a promising, convenient, new method for the growth of high-quality CdSe single crystals.  相似文献   

16.
The growth of Si(001) from a gas source molecular beam epitaxy system (Si-GSMBE) using disilane (Si2H6) was investigated using reflection high-energy electron diffraction (RHEED). The surface reconstructions occurring between 100 and 775°C were studied as a function of both substrate temperature and surface coverage. We report the first observation of (2x2) and c(4x4) reconstructions during growth at substrate temperatures near 645°C using Si2H6. All growth was found to be initiated by the formation of three-dimensional (3D) islands which coalesced at substrate temperatures above 600°C. The surface reconstruction was found to change from a disordered to an ordered (2x1)+(1x2) structure at 775°C via intermediate (2x2) and c(4x4) phases. Thereafter, growth was found to proceed in a 2D layer-by-layer fashion, as evidenced by the observation of RHEED intensity oscillations. This technique has been used, for the first time, to calibrate growth rates during Si-GSMBE. The intensity oscillations were measured as a function of both substrate temperature and incident beam flux. Strong and damped oscillations were observed between 610 and 680°C, in the two-dimensional growth regime. At higher temperatures, growth by step propagation dominated while at lower temperatures, growth became increasingly three-dimensional and consequently oscillations were weak or absent. Similarly, there was a minimum flux limit ( <0.16 SCCM), below which no oscillations were recorded.  相似文献   

17.
The development of microstructure during crystallisation of a glass with composition Y15.2Si14.7Al8.7O54.1N7.4 has been studied by analytical and high resolution transmission electron microscopy. Crystal nucleation at temperatures in the range 965–1050°C occurs by the heterogeneous nucleation of lenticular-shaped yttrium, silicon and aluminium containing crystals on silicon-rich clusters that formed during glass preparation. The lenticular crystals have a wide range of composition after heat treatment at 1050°C; the yttrium cation percentage varies around that of the expected B-phase composition Y2SiAlO5N but the aluminium content is lower and the silicon content generally significantly higher than that. The crystals display the hexagonal crystal structure of B-phase, although the results from EDX analysis imply that the atomic arrangement of the lattice is not the previously proposed B-phase structure. Crystal growth during prolonged heat treatment at 1050°C occurs to a significant extent by coalescence.  相似文献   

18.
Cobalt ferrite (CoFe2O4) thin film is epitaxially grown on (0 0 1) SrTiO3 (STO) by laser molecular beam epitaxy (LMBE). The growth modes of CoFe2O4 (CFO) film are found to be sensitive to laser repetition, the transitions from layer-by-layer mode to Stranski–Krastanov (SK) mode and then to island mode occur at the laser repetition of 3 and 5 Hz at 700 °C, respectively. The X-ray diffraction (XRD) results show that the CFO film on (0 0 1) SrTiO3 is compressively strained by the underlying substrate and exhibits high crystallinity with a full-width at half-maximum of 0.86°. Microstructural studies indicate that the as-deposited CFO film is c-oriented island structure with rough surface morphology and the magnetic measurements reveal that the compressive strained CoFe2O4 film exhibits an enhanced out-of-plane magnetization (190 emu/cm3) with a large coercivity (3.8 kOe).  相似文献   

19.
A series of ZnO films were grown on GaAs(0 0 1) substrates at different growth temperatures in the range 250–720°C by metalorganic chemical vapor depostion. Field emission scanning electron microscopy was utilized to investigate the surface morphology of ZnO films. The crystallinity of ZnO films was investigated by the double-crystal X-ray diffractometry. The optical and electrical properties of ZnO films were also investigated using room-temperature photoluminescence and Hall measurements. Arrhenius plots of the growth rate versus reciprocal temperature revealed the kinetically limited growth behavior depending on the growth temperature. It was found that the surface morphology, structural, optical and electrical properties of the films were improved with increasing growth temperature to 650°C. All the properties of the film grown at 720°C were degraded due to the decomposition of ZnO film.  相似文献   

20.
Surface topography of the {0 0 0 1} facet plane of as-grown 6H- and 4H-SiC crystals was studied ex situ by Nomarski optical microscopy (NOM) and atomic force microscopy (AFM). The surface polarity and the polytype of grown crystals largely affect the growth surface morphology of SiC{0 0 0 1} via differences in several thermodynamic and kinetic parameters. NOM observations revealed giant steps of a few micrometers in height on the {0 0 0 1} growth facet, and it was found that a morphological transition of the growth facet occurred when the growth conditions were changed. AFM imaging of the stepped structure of SiC{0 0 0 1} detected steps of height equal to the unit c-lattice parameter (c=1.512 nm for 6H-SiC and 1.005 nm for 4H-SiC). They are fairly straight and very regularly arranged, giving rise to equidistant step trains. Upon nitrogen doping, these regular step trains on the 6H-SiC(0 0 0  )C and 4H-SiC(0 0 0  )C surfaces became unstable: the equidistant step trains were transformed into meandering macrosteps of height greater than 10 nm. In this paper, we discuss the mechanism of macrostep formation (step bunching) on the SiC{0 0 0 1} surfaces through the consideration of the interplay between step energetics (repulsive step interaction) and kinetics (asymmetric step kinetics) on the growing crystal surface and elucidate how they affect the growth surface morphology of the SiC{0 0 0 1} facet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号